

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40174B
 MSI
 Hex D-type flip-flop

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF40174B is a hex edge-triggered D-type flip-flop with six data inputs (D_{0} to D_{5}), a clock input (CP), an overriding asynchronous master reset input (MR), and six
buffered outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{5}\right)$. Information on D_{0} to D_{5} is transferred to O_{0} to O_{5} on the LOW to HIGH transition of CP if $\overline{\mathrm{MR}}$ is HIGH. When LOW, $\overline{\mathrm{MR}}$ resets all flip-flops (O_{0} to $\mathrm{O}_{5}=L O W$) independent of CP and D_{0} to D_{5}.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

HEF40174BP(N): 16-lead DIL; plastic (SOT38-1)
HEF40174BD(F): 16-lead DIL; ceramic (cerdip)
(SOT74)
HEF40174BT(D): 16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

PINNING

D_{0} to D_{5}	data inputs
$C P$	clock input (LOW to HIGH; edge-triggered)
$\overline{M R}$	master reset input (active LOW)
O_{0} to O_{5}	buffered outputs

FUNCTION TABLE

INPUTS			OUTPUT
$\mathbf{C P}$	\mathbf{D}	$\overline{\mathbf{M R}}$	\mathbf{O}
Γ	H	H	H
Γ	L	H	L
τ	X	H	no change
X	X	L	L

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\Gamma=$ positive-going transition
Z = negative-going transition
G661 Kıenuer
3

Fig. 3 Logic diagram

[^0]
AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN. TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 75 \\ & 30 \\ & 20 \end{aligned}$	155 ns 65 ns 45 ns	$\begin{aligned} & 48 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \hline 75 \\ & 30 \\ & 20 \end{aligned}$	155 ns 65 ns 45 ns	$\begin{aligned} & 48 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\overline{\mathrm{MR}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 85 \\ & 35 \\ & 25 \end{aligned}$	175 ns 70 ns 50 ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {ThiL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {th }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 ns 60 ns 40 ns	$\begin{array}{r} \hline 10 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
Set-up time $\mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	20 10 10 5 10 5	ns ns ns	
Hold time $\mathrm{D}_{\mathrm{n}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	10 0 5 0 5 0	ns ns ns	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$	70 35 30 15 20 10	ns ns ns	see also waveforms Fig. 4
Minimum $\overline{\mathrm{MR}}$ pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twMRL	70 35 35 15 25 10	ns ns ns	
Recovery time for $\overline{\mathrm{MR}}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {RMR }}$	45 25 20 10 15 5	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	5 11 15 30 20 45	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{array}{r} 3500 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 16000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \\ 42000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{array}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(f_{0} C_{L}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

Fig. 4 Waveforms showing minimum pulse widths for $C P$ and $\overline{M R}, \overline{M R}$ to CP recovery time, and set-up time and hold time for D_{n} to $C P$. Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

Some examples of applications for the HEF40174B are:

- Shift registers
- Buffer/storage register
- Pattern generator

[^0]: dolf-d!! ədイł-a xəН

