DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4514B MSI 1-of-16 decoder/demultiplexer with input latches

Product specification
File under Integrated Circuits, IC04

PHILIPS

1-of-16 decoder/demultiplexer with input latches

DESCRIPTION

The HEF4514B is a 1 -of-16 decoder/demultiplexer, having four binary weighted address inputs (A_{0} to A_{3}), a latch enable input (EL), and an active LOW enable input ($\overline{\mathrm{E}}$). The 16 outputs (O_{0} to O_{15}) are mutually exclusive active HIGH. When EL is HIGH, the selected output is determined by the data on A_{n}. When EL goes LOW, the
last data present at A_{n} are stored in the latches and the outputs remain stable. When $\overline{\mathrm{E}}$ is LOW, the selected output, determined by the contents of the latch, is HIGH. At $\overline{\mathrm{E}}$ HIGH, all outputs are LOW. The enable input ($\overline{\mathrm{E}}$) does not affect the state of the latch. When the HEF4514B is used as a demultiplexer, \bar{E} is the data input and A_{0} to A_{3} are the address inputs.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

PINNING

A_{0} to A_{3}	address inputs
\bar{E}	enable input (active LOW)
EL	latch enable input
O_{0} to O_{15}	outputs (active HIGH)

HEF4514BP(N):	24-lead DIL; plastic (SOT101-1)
HEF4514BD(F):	$24-l e a d ~ D I L ; ~ c e r a m i c ~(c e r d i p) ~$ (SOT94)
HEF4514BT(D):	24-lead SO; plastic
	(SOT137-1)
(): Package Designator North America	

APPLICATION INFORMATION

Some examples of applications for the HEF4514B are:

- Digital multiplexing.
- Address decoding.
- Hexadecimal/BCD decoding.

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

Fig. 3 Logic diagram.

Fig. 4 Logic diagram (one latch).

TRUTH TABLE

INPUTS					OUTPUTS															
$\overline{\mathrm{E}}$	A_{0}	A_{1}	A_{2}	A_{3}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}	O_{10}	O_{11}	O_{12}	O_{13}	O_{14}	O_{15}
H	X	X	X	X	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L
L	H	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	H	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L
L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L
L	H	H	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L
L	L	L	L	H	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L
L	H	L	L	H	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L
L	L	H	L	H	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L
L	H	H	L	H	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L
L	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L
L	H	L	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L
L	L	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L
L	H	H	H	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H

Notes

1. $\mathrm{EL}=\mathrm{HIGH} ; \mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage);
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage); $\mathrm{X}=$ state is immaterial

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
Propagation delays $\mathrm{A}_{\mathrm{n}}, \mathrm{EL} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 260 \\ 95 \\ 65 \end{array}$	$\begin{aligned} & 520 \\ & 190 \\ & 130 \end{aligned}$	ns ns ns	$\begin{array}{r} 233 \mathrm{~ns} \\ 84 \mathrm{~ns} \\ 57 \mathrm{~ns} \end{array}$	$\begin{aligned} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +(0,23 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +\quad(0,16 \mathrm{~ns} / \mathrm{pF}) C_{L} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpLH	$\begin{array}{r} 270 \\ 95 \\ 65 \end{array}$	$\begin{aligned} & 550 \\ & 190 \\ & 130 \end{aligned}$	ns ns ns	$\begin{array}{r} 243 \mathrm{~ns} \\ 84 \mathrm{~ns} \\ 57 \mathrm{~ns} \end{array}$	$\begin{aligned} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +(0,23 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +\quad(0,16 \mathrm{~ns} / \mathrm{pF}) C_{L} \end{aligned}$
$\overline{\mathrm{E}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 175 \\ 65 \\ 45 \end{array}$	$\begin{array}{r} 350 \\ 130 \\ 90 \end{array}$	ns ns ns	$\begin{array}{r} 148 \mathrm{~ns} \\ 54 \mathrm{~ns} \\ 37 \mathrm{~ns} \end{array}$	$\begin{aligned} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +\quad(0,23 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +\quad(0,16 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & \hline \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 200 \\ 70 \\ 50 \end{array}$	$\begin{aligned} & 400 \\ & 140 \\ & 100 \end{aligned}$	ns ns ns	$\begin{array}{r} \hline 173 \mathrm{~ns} \\ 59 \mathrm{~ns} \\ 42 \mathrm{~ns} \end{array}$	$\begin{aligned} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +(0,23 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & +\quad(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$

1-of-16 decoder/demultiplexer with input latches

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	180 65 50	ns ns ns	$\begin{aligned} & 40 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 11 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$		$\begin{aligned} & 85 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 170 \\ 70 \\ 50 \end{array}$	ns ns ns	$\begin{aligned} & 35 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & 11 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
Set-up time $\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{EL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 120 \\ 40 \\ 30 \end{array}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	see also waveforms Fig. 5
Hold time $\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{EL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	
Minimum EL pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WELH }}$	$\begin{array}{r} 120 \\ 40 \\ 30 \end{array}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	

	$\mathbf{V}_{\text {DD }}$	TYPICAL FORMULA FOR P $(\mu \mathbf{W})$	
Dynamic power	5	$1100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$5500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$16000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{O}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 5 Waveforms showing minimum pulse width for EL, set-up and hold times for A_{n} to EL. Set-up and hold times are shown as positive values but may be specified as negative values.

