INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

Product specification

HEF4518B MSI

Dual BCD counter

DESCRIPTION

T he HEF4518B is a dual 4-bit internally synchronous BCD counter. The counter has an active HIGH clock input (CP_0) and an active LOW clock input (\overline{CP}_1) , buffered outputs from all four bit positions $(O_0 \text{ to } O_3)$ and an active HIGH overriding asynchronous master reset input (MR). The counter advances on either the LOW to HIGH transition of the CP₀ input if \overline{CP}_1 is HIGH or the HIGH to

LOW transition of the \overline{CP}_1 input if CP_0 is LOW. Either CP_0 or \overline{CP}_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on MR resets the counter (O_0 to $O_3 = LOW$) independent of CP_0 , \overline{CP}_1 .

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

PINNING

CP _{0A} , CP _{0B}	clock inputs (L to H triggered)
$\overline{CP}_{1A}, \overline{CP}_{1B}$	clock inputs (H to L triggered)
MR_A , MR_B	master reset inputs
O_{0A} to O_{3A}	outputs
O_{0B} to O_{3B}	outputs

HEF4518BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4518BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4518BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

APPLICATION INFORMATION

Some examples of applications for the HEF4518B are:

- Multistage synchronous counting.
- Multistage asynchronous counting.
- Frequency dividers.

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

January 1995

_

$^{\omega}$ FUNCTION TABLE

\mathbf{CP}_0		MR	MODE
7	Н	L	counter advances
L	~	L	counter advances
\sim	X	L	no change
Х	<u> </u>	L	no change
٦	L	L	no change
Н	~	L	no change
Х	Х	Н	O_0 to $O_3 = LOW$

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

- ✓ = positive-going transition
- γ = negative-going transition

Product specification

HEF4518B

ISM

Dual BCD counter

Philips Semiconductors

Dual BCD counter

HEF4518B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
CP_0 , $\overline{CP}_1 \rightarrow O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
Output transition							
times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum CP ₀	5		60	30		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	
	15		20	10		ns	
Minimum CP ₁	5		60	30		ns	
pulse width; HIGH	10	t _{WCPH}	30	15		ns	
	15		20	10		ns	
Minimum MR	5		30	15		ns	
pulse width; HIGH	10	t _{WMRH}	20	10		ns	
	15		16	8		ns	
Recovery time	5		50	25		ns	
for MR	10	t _{RMR}	30	15		ns	see also waveforms
	15		20	10		ns	Figs 4 and 5
Set-up times	5		50	25		ns	
$CP_0 \rightarrow \overline{CP}_1$	10	t _{su}	30	15		ns	
	15		20	10		ns	
	5		50	25		ns	
$\overline{CP}_1 \rightarrow CP_0$	10	t _{su}	30	15		ns	
	15		20	10		ns	
Maximum clock	5		8	16		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		20	40		MHz	

Dual BCD counter

HEF4518B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	$750f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	3300 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	8000 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

Dual BCD counter

HEF4518B MSI

Philips Semiconductors

Dual BCD counter

Product specification

HEF4518B NSI

7

_