DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4557B

LSI
1-to-64 bit variable length shift register

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64 . The number of bits selected is equal to the sum of the subscripts of the enabled length control inputs ($\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{4}, \mathrm{~L}_{8}, \mathrm{~L}_{16}$ and L_{32}) plus one. Serial data may be selected from the D_{A} or D_{B} data inputs with the A / \bar{B} select input. This feature is useful for recirculation
purposes. Information on D_{A} or D_{B} is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP_{0} while $\overline{\mathrm{CP}}_{1}$ is LOW or on the HIGH to LOW transition of $\overline{\mathrm{CP}}_{1}$ while CP_{0} is HIGH. A HIGH on master reset (MR) resets the register and forces O to LOW and $\overline{\mathrm{O}}$ to HIGH, independent of the other inputs.

Fig. 1 Functional diagram.

PINNING

D_{A}, D_{B}
A / \bar{B}
CP_{0}
$\overline{\mathrm{CP}}_{1}$
MR
L_{1} to L_{32}
$\mathrm{O}, \overline{\mathrm{O}}$
data inputs
select data input
clock input
clock enable input
asynchronous master reset
bit-length control inputs
buffered outputs

Fig. 2 Pinning diagram.

HEF4557BP(N): 16-lead DIL; plastic
(SOT38-1)
16-lead DIL; ceramic (cerdip)
(SOT74)
16-lead SO; plastic
(SOT109-1)
(): Package Designator North America

	(SOT38-1) HEF4557BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4557BT(D): \quad16-lead SO; plastic (SOT109-1)	
(): Package Designator North America	

FAMILY DATA, IDD LIMITS category LSI
See Family Specifications
3
G661 Kıenuep

Fig. 3 Logic diagram. azs

FUNCTION TABLE

INPUTS						
OUTPUT						
MR	$\mathbf{A} / \overline{\mathbf{B}}$	$\mathbf{D}_{\mathbf{A}}$	$\mathrm{D}_{\mathbf{B}}$	$\mathbf{C P}$	$\overline{\mathbf{C P}}_{\mathbf{1}}$	$\mathbf{O}^{\left({ }^{(1)}\right.}$
L	L	D_{1}	D_{2}	Γ	L	D_{2}
L	H	D_{1}	D_{2}	Γ	L	D_{1}
L	L	D_{1}	D_{2}	H	L	D_{2}
L	H	D_{1}	D_{2}	H	L	D_{1}
H	X	X	X	X	X	L

Notes

1. The moment D_{n} appears at O depends on the bit-length shown in the table below.
2. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
3. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
4. $\mathrm{X}=$ state is immaterial
5. $\Gamma=$ positive-going transition
6. $\mathcal{L}=$ negative-going transition
7. $D_{n}=$ either HIGH or LOW

BIT-LENGTH SELECT FUNCTION TABLE

L_{32}	L_{16}	L_{8}	L_{4}	L_{2}	L_{1}	REGISTER LENGTH
L	L	L	L	L	L	1-bit
L	L	L	L	L	H	2-bits
L	L	L	L	H	L	3-bits
L	L	L	L	H	H	4-bits
L	L	L	H	L	L	5-bits
L	L	L	H	L	H	6-bits
L	L	L	H	H	L	7-bits
L	L	L	H	H	H	8-bits
\downarrow						
L	H	H	H	H	H	32-bits
H	L	L	L	L	L	33-bits
H	L	L	L	L	H	34-bits
\downarrow						
H	H	H	H	L	L	61-bits
H	H	H	H	L	H	62-bits
H	H	H	H	H	L	63-bits
H	H	H	H	H	H	64-bits

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$3500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$15000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$37000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
			$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

\qquad

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1} \rightarrow \mathrm{O}, \overline{\mathrm{O}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 240 \\ 90 \\ 65 \end{array}$	$\begin{aligned} & 480 \\ & 180 \\ & 130 \end{aligned}$	ns ns ns	$\begin{array}{r} 213 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 79 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 57 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tply	$\begin{array}{r} \hline 240 \\ 90 \\ 65 \end{array}$	$\begin{aligned} & \hline 480 \\ & 180 \\ & 130 \end{aligned}$	ns ns ns	$\begin{array}{r} 213 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 79 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 57 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$
$\mathrm{MR} \rightarrow \mathrm{O}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 170 \\ 80 \\ 60 \end{array}$	$\begin{aligned} & 340 \\ & 160 \\ & 120 \end{aligned}$	ns ns ns	$\begin{aligned} 143 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 69 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \overline{\mathrm{O}}$ LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tpLH	$\begin{array}{r} 140 \\ 70 \\ 55 \end{array}$	$\begin{aligned} & 280 \\ & 140 \\ & 110 \end{aligned}$	ns ns ns	$\begin{aligned} 113 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 59 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 47 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & \hline 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} \hline 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

Interpolation table (see note next page)

LENGTH CONTROL INPUTS						MINIMUM NUMBER OF BITS SELECTED	SET-UP, HOLD, RECOVERY TIMES
L_{1}	L_{2}	L_{4}	L_{8}	L_{16}	L_{32}		
L	L	L	L	L	L	1	specified
H	L	L	L	L	L	2	
X	H	L	L	L	L	3	
X	X	H	L	L	L	5	six equal steps
X	X	X	H	L	L	9	
X	X	X	X	H	L	17	
X	X	X	X	X	H	33	specified

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
2. $\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage)
3. $X=$ state is immaterial

1-to-64 bit variable length shift register

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$; see also waveforms Fig. 4

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	
Minimum clock pulse width; LOW for CP_{0} or HIGH for $\overline{\mathrm{CP}}_{1}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$ or twCPH	$\begin{array}{r} 180 \\ 60 \\ 40 \\ \hline \end{array}$	90 ns 30 ns 20 ns	
Minimum reset pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twMRH	$\begin{array}{r} \hline 150 \\ 70 \\ 50 \end{array}$	75 ns 35 ns 25 ns	
Set-up times $\begin{aligned} & \mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}, \mathrm{~A} / \overline{\mathrm{B}} \rightarrow \mathrm{CP}_{0}, \\ & \mathrm{CP}_{1} \\ & \mathrm{~L}_{1} \text { to } \mathrm{L}_{32}=\mathrm{LOW} \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 360 \\ 140 \\ 90 \end{array}$	$\begin{array}{r} 180 \mathrm{~ns} \\ 70 \mathrm{~ns} \\ 45 \mathrm{~ns} \end{array}$	
$\mathrm{L}_{32}=\mathrm{HIGH}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	$\begin{array}{r} -20 \mathrm{~ns} \\ -10 \mathrm{~ns} \\ -5 \mathrm{~ns} \end{array}$	
Hold times $\begin{aligned} & \frac{D_{A}, D_{B}, A / \bar{B} \rightarrow C P_{0},}{\overline{C P}_{1}} \\ & L_{1} \text { to } L_{32}=L O W \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} -40 \\ -10 \\ 0 \end{array}$	-110 ns $-45 \mathrm{~ns}$ -30 ns	see note
$\mathrm{L}_{32}=\mathrm{HIGH}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	30 ns 20 ns 15 ns	
Recovery times for MR $L_{1} \text { to } L_{32}=L O W$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {RMR }}$	$\begin{aligned} & 500 \\ & 250 \\ & 150 \end{aligned}$	$\begin{array}{r} 250 \mathrm{~ns} \\ 125 \mathrm{~ns} \\ 75 \mathrm{~ns} \end{array}$	
$\mathrm{L}_{32}=\mathrm{HIGH}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	$\begin{array}{r} 110 \\ 70 \\ 60 \end{array}$	50 ns 30 ns 25 ns	
Minimum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 2,5 \\ 7 \\ 10 \end{array}$	$\begin{array}{r} \hline 5 \mathrm{MHz} \\ 14 \mathrm{MHz} \\ 20 \mathrm{MHz} \end{array}$	

Note

1. The set-up, hold and recovery times vary with the minimum number of bits selected. For other values as specified one may interpolate as shown in the table (see previous page).

Fig. 4 Waveforms showing recovery time for MR and minimum $\mathrm{CP}_{0}, \overline{\mathrm{CP}}_{1}$ and $M R$ pulse widths, set-up and hold times for D_{A}, D_{B} and A / \bar{B} to $C P_{0}$ and $\overline{C P}_{1}$. Set-up and hold times are shown as positive values but may be specified as negative values.

