DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4724B
 MSI

8-bit addressable latch

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4724B is an 8-bit addressable latch with three address inputs (A_{0} to A_{2}), a data input (D), an active LOW enable input ($\overline{\mathrm{E}}$), an active HIGH clear input (CL), and eight parallel latch outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{7}\right)$.
When \bar{E} and $C L$ are HIGH , all outputs $\left(\mathrm{O}_{0}\right.$ to $\left.\mathrm{O}_{7}\right)$ are LOW. Eight-channel demultiplexing or active HIGH 1-of-8 decoding with output enable operation occurs when CL is HIGH and $\overline{\mathrm{E}}$ is LOW. When CL and $\overline{\mathrm{E}}$ are LOW, the

Fig. 1 Functional diagram.

MODE SELECTION

$\overline{\mathbf{E}}$	CL	MODE
L	L	addressable latch
H	L	memory
L	H	active HIGH 8-channel demultiplexer
H	H	clear

FUNCTION TABLE

CL	$\overline{\mathrm{E}}$	D	A_{0}	A_{1}	A_{2}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	MODE
H	H	X	X	X	X	L	L	L	L	L	L	L	L	clear
H	L	D_{1}	L	L	L	D_{1}	L	L	L	L	L	L	L	
H	L	D_{1}	H	L	L	L	D_{1}	L	L	L	L	L	L	
H	L	D_{1}	L	H	L	L	L	D_{1}	L	L	L	L	L	demultiplexer;
H	L	D_{1}	H	H	L	L	L	L	D_{1}	L	L	L	L	unaddressed
H	L	D_{1}	L	L	H	L	L	L	L	D_{1}	L	L	L	latch is
H	L	D_{1}	H	L	H	L	L	L	L	L	D_{1}	L	L	cleared
H	L	D_{1}	L	H	H	L	L	L	L	L	L	D_{1}	L	
H	L	D_{1}	H	H	H	L	L	L	L	L	L	L	D_{1}	
L	H	X	X	X	X	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	$\mathrm{O}_{\mathrm{n}-1}$	memory
L	L	D_{1}	L	L	L	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	O_{n-1}	
L	L	D_{1}	H	L	L	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	O_{n-1}	
L	L	D_{1}	L	H	L	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	O_{n-1}	latch;
L	L	D_{1}	H	H	L	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	$\mathrm{O}_{\mathrm{n}-1}$	unaddressed
L	L	D_{1}	L	L	H	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	$\mathrm{O}_{\mathrm{n}-1}$	latch holds
L	L	D_{1}	H	L	H	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	O_{n-1}	$\mathrm{O}_{\mathrm{n}-1}$	previous state
L	L	D_{1}	L	H	H	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	D_{1}	$\mathrm{O}_{\mathrm{n}-1}$	
L	L	D_{1}	H	H	H	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	$\mathrm{O}_{\mathrm{n}-1}$	O_{n-1}	D_{1}	

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
$\mathrm{L}=$ LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial
$\mathrm{O}_{\mathrm{n}-1}=$ state before the positive transition of $\overline{\mathrm{E}}$
$\mathrm{D}_{1}=$ either HIGH or LOW

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$3700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$10800 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\overline{\mathrm{E}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$		$\begin{array}{r} 115 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 230 \\ 95 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{L} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple		$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 195 \\ 80 \\ 55 \end{array}$	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
$\mathrm{D} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$		$\begin{aligned} & 95 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 190 \\ 75 \\ 55 \end{array}$	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$		$\begin{aligned} & 85 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} \hline 170 \\ 75 \\ 55 \\ \hline \end{array}$	ns ns ns	$\begin{aligned} & \hline 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$A_{n} \rightarrow O_{n}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$		$\begin{array}{r} 110 \\ 45 \\ 35 \end{array}$	$\begin{array}{r} 225 \\ 95 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$		$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	$\begin{array}{r} 190 \\ 80 \\ 55 \end{array}$	ns ns ns	$\begin{aligned} & 68 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 29 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{CL} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$		$\begin{aligned} & 85 \\ & 35 \\ & 25 \end{aligned}$	165 70 50	ns ns ns	$\begin{aligned} & 58 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Set-up times$\mathrm{D} \rightarrow \overline{\mathrm{E}}$$A_{n} \rightarrow \overline{\mathrm{E}}$	5	$\mathrm{t}_{\text {su }}$	40	20	ns	see also waveformsFig. 5
	10		15	5	ns	
	15		10	0	ns	
	5	$\mathrm{t}_{\text {su }}$	40	20	ns	
	10		20	10	ns	
	15		15	5	ns	
Hold times$\mathrm{D} \rightarrow \overline{\mathrm{E}}$$\mathrm{A}_{\mathrm{n}} \rightarrow \overline{\mathrm{E}}$	5	$t_{\text {hold }}$	20	0	ns	
	10		15	5	ns	
	15		15	5	ns	
	5		50	25	ns	
	10	$\mathrm{thold}^{\text {l }}$	20	10	ns	
	15		15	5	ns	
Minimum $\overline{\mathrm{E}}$	5		75	35	ns	
pulse width; LOW	10	$\mathrm{t}_{\text {WEL }}$	30	15	ns	
	15		20	10	ns	
Minimum CL	5		70	35	ns	
pulse width; HIGH	10	$\mathrm{t}_{\text {WCLH }}$	30	15	ns	
	15		20	10	ns	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {TLH }}$		$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

(1) The address to enable set-up time is the time before the HIGH to LOW enable transition that the address must be stable so that the correct latch is addressed and the other latches are not affected.

Fig. 5 Waveforms showing minimum \bar{E} and CL pulse widths, set-up times, hold times. Set-up and hold times are shown as positive values but may be specified as negative values.

