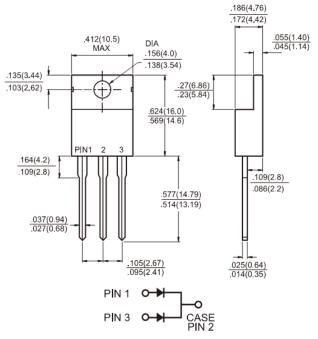
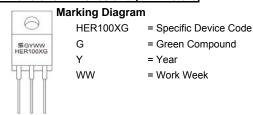


Features

- ♦ Glass passivated chip junction
- ♦ High efficiency, Low VF
- ♦ High current capability
- ♦ High reliability
- High surge current capability
- For use in low voltage, high frequency inventor, free wheeling, and polarity protection application
- Green compound with suffix "G" on packing code & prefix "G" on datecode


Mechanical Data

- ♦ Case: TO-220AB Molded plastic
- Terminals: Pure tin plated, lead free, solderable per MIL-STD-202, Method 208 guaranteed
- ♦ Polarity: As marked
- → High temperature soldering guaranteed: 260°C/10s/.16", (4.06mm) from case
- ♦ Weight: 2.24 grams


HER1001G - HER1008G

10.0AMPS. Glass Passivated High Efficient Rectifiers

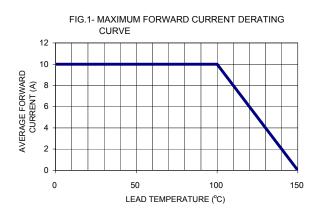
TO-220AB

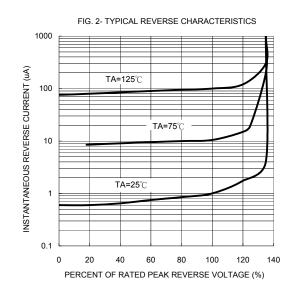
Dimensions in inches and (millimeters)

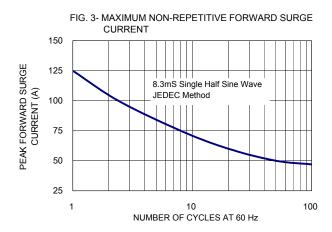
Maximum Ratings and Electrical Characteristics

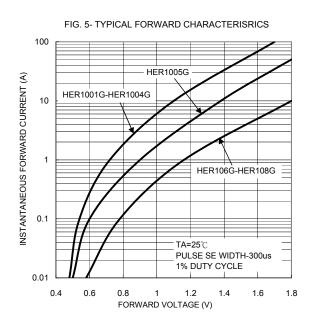
For capacitive load, derate current by 20%

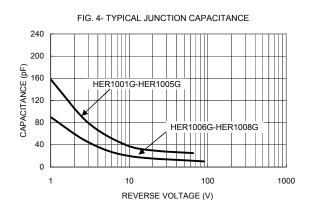
Symbol	HER 1001G	HER 1002G	HER 1003G	HER 1004G	HER 1005G	HER 1006G	HER 1007G	HER 1008G	Units
V_{RRM}	50	100	200	300	400	600	800	1000	V
V_{RMS}	35	70	140	210	280	420	560	700	V
V_{DC}	50	100	200	300	400	600	800	1000	V
$I_{F(AV)}$	10							Α	
I _{FSM}	125							Α	
V_{F}	1.0 1.3				1.7		٧		
-	10								uA
'R	400								uA
Trr	50 80						nS		
Cj	60 40							pF	
$R_{\theta JC}$	1.5							°C/W	
TJ	- 65 to + 150							°С	
T _{STG}	- 65 to + 150							°С	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ I_{F(AV)} \\ I_{FSM} \\ \\ V_{F} \\ I_{R} \\ \\ Trr \\ Cj \\ R_{\theta JC} \\ T_{J} \\ \end{array}$	Symbol 1001G V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)}	Symbol 1001G 1002G V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{F(AV)} 1 I _{FSM} 1 I _R Trr Cj R _{θJC} T _J 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol 1001G 1002G 1003G 1004G V _{RRM} 50 100 200 300 V _{RMS} 35 70 140 210 V _{DC} 50 100 200 300 I _{F(AV)} 1 1 V _F 1.0 1 I _R 4 4 Trr 50 50 Cj 60 60 R _{θJC} 1 -65 to	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol VRRM 1001G 1002G 1003G 1004G 1005G 1006G 1007G 1008G VRRM 50 100 200 300 400 600 800 1000 V _{RMS} 35 70 140 210 280 420 560 700 V _{DC} 50 100 200 300 400 600 800 1000 I _{F(AV)} 125 V _F 1.0 1.3 1.7 1.7 I _R 400 80 80 60 Trr 50 60 40 40 40 R _{BUC} 1.5 -65 to +150 -65 to +150 -65 to +150 -65 to +150


Note 1: Pulse Test with PW=300 usec, 1% Duty Cycle


Note 2: Reverse Recovery Test Conditions: IF=0.5A, IR=1.0A, IRR=0.25A


Note 3: Measured at 1 MHz and Applied Reverse Voltage of 4.0V D.C.




RATINGS AND CHARACTERISTIC CURVES (HER1001G THRU HER1008G)

