TECHNOLOGIES

Data Sheet

HLCP-A100/ -B100/ -C100/ D100/ -E100/ -F100/ -G100/ -H100
HLM P-2300/-2350/-2400/-2450/-2500/-2550
HLM P-2600/-2620/-2635/-2655/-2670/-2685
HLM P-2700/-2720/-2735/-2755/-2770/-2785
HLM P-2800/-2820/-2835/-2855/-2870/-2885
HLM P-2950/-2965

Description

The HLCP-X100 and HLMP-2XXX series light bars are rectangular light sources designed for a variety of applications where a large bright source of light is required. These light bars are configured in single-in-line and dual-in-line packages that contain either single or segmented light emitting areas. The AIGaAs Red HLCP-X100 series LEDs use double heterojunction AlGaAs on a GaAs substrate. The HER HLMP-2300/2600 and Yellow HLMP-2400/2700 series LEDs have their p-n junctions diffused into a GaAsP epitaxial layer on a GaP substrate. The Green HLMP2500/2800 series LEDs use a liquid phase GaP epitaxial layer on a GaP substrate. The bicolor HLMP2900 series use a combination of HER/Yellow or HER/ Green LEDs.

Features

- Large bright, uniform light emitting areas
- Choice of colors
- Categorized for light output
- Yellow and Green categorized for dominant w avelength
- Excellent ON-OFF contrast
- X-Y stackable
- Flush mountable
- Can be used with panel and legend mounts
- Light emitting surface suitable for legend attachment per Application Note 1012
- HLCP-X100 Series designed for low current operation
- Bicolor devices available

Applications

- Business machine message annunciators
- Telecommunications indicators
- Front panel process status indicators
- PC board identifiers
- Bar graphs

Selection Guide

Light Bar Part Number				Size of Light E mitting Areas	Number of Light Emitting Areas	Package Outline		Corresponding Panel and Legend Mount Part No. HLMP.
HLCP-	HLMP-							
AlGaAs	HER	Yellow	Green					
A100	2300	2400	2500	$\begin{aligned} & 8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .150 \mathrm{in} .) \end{aligned}$	1	A	\square	2599
B100	2350	2450	2550	$\begin{aligned} & 19.05 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & \text { (. } 750 \mathrm{in} . \times .150 \mathrm{in} . \text {) } \end{aligned}$	1	B	\square	2598
D100	2600	2700	2800	$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$ $\text { (. } 350 \text { in. x . } 150 \text { in.) }$	2	D	\square	2898
E100	2620	2720	2820	$\begin{aligned} & 8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm} \\ & \text { (. } 350 \mathrm{in} . \times .150 \mathrm{in} .) \end{aligned}$	4	E	$\square \square$	2899
F100	2635	2735	2835	$\begin{aligned} & 3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm} \\ & \text { (. } 150 \mathrm{in} \times .750 \mathrm{in} . \text {) } \end{aligned}$	2	F	\longrightarrow	2899
C100	2655	2755	2855	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & \text { (. } 350 \mathrm{in} . x .350 \mathrm{in} .) \end{aligned}$	1	C	\square	2898
G100	2670	2770	2870	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .350 \mathrm{in} .) \end{aligned}$	2	G	-	2899
H100	2685	2785	2885	$\begin{aligned} & 8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm} \\ & \text { (. } 350 \mathrm{in} . \times .750 \mathrm{in} .) \end{aligned}$	1	H	\square	2899
	2950	2950		$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & (.350 \mathrm{in} . \times .350 \mathrm{in} .) \end{aligned}$	Bicolor	1	\square	2898
	2965		2965	$\begin{aligned} & 8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm} \\ & \text { (. } 350 \mathrm{in} . x .350 \mathrm{in} .) \end{aligned}$	Bicolor	1	\square	2898

Part Numbering System

HLCP - $\underline{x} \underline{x} \underline{x}-\underline{x x} \underline{x} \underline{x}$
HLMP - $x x$ xx - $x x x x$

Notes:

1. For codes not listed in the figure above, please refer to the respective data sheet or contact your nearest Avago representative for details.
2. Bin options refer to shippable bins for a part-number. Color and Intensity Bins are typically restricted to 1 bin per tube (exceptions may apply). Please refer to respective data sheet for specific bin limit information.

Package Dimensions

NOTES:

1. DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES $\pm 0.25 \mathrm{~mm}(\pm 0.010 \operatorname{IN}$.$) UNLESS OTHERWISE INDICATED.$
2. IFORESELLOW AND GREEN DEVICES ONLY.
3. DIMENSIONS IN MILLIMETRES (INCHES). TOLERANCES $\pm 0.25 \mathrm{~mm}(\pm 0.010 \mathrm{IN}$.) UNLESS OTHERWISE INDICATED.
4. FOR YELLOW AND GREEN DEVICES ONLY.

PIN	PIN FUNCTION	
	HER	YELLOW/ GREEN
1	CATHODE a	ANODE e
2	ANODE a	CATHODE e
3	ANODE b	CATHODE \mathbf{f}
4	CATHODE b	ANODE \mathbf{f}
5	CATHODE c	ANODE g
6	ANODE c	CATHODE g
7	ANODE d	CATHODE h
8	CATHODE d	ANODE h

Absolute Maximum Ratings

Parameter	AIGaAs Red HLCP-X100 Series	```HER HLMP-2300/ 2600/29XX Series```	$\begin{gathered} \text { Yellow } \\ \text { HLMP-2400/ } \\ 2700 / 2950 \\ \text { Series } \end{gathered}$	Green HLMP-2500/ 2800/2965 Series
Average Power Dissipated per LED Chip	$37 \mathrm{~mW}{ }^{[1]}$	$135 \mathrm{~mW}^{[2]}$	$85 \mathrm{~mW}{ }^{[3]}$	$135 \mathrm{~mW}^{[2]}$
Peak Forward Current per LED Chip	$45 \mathrm{~mA}^{[4]}$	$90 \mathrm{~mA}^{[5]}$	$60 \mathrm{~mA}^{[5]}$	$90 \mathrm{~mA}^{[5]}$
Average Forward Current per LED Chip	15 mA	25 mA	20 mA	25 mA
DC Forward Current per LED Chip	$15 \mathrm{~mA}^{[1]}$	$30 \mathrm{~mA}^{[2]}$	$25 \mathrm{~mA}^{[3]}$	$30 \mathrm{~mA}^{[2]}$
Reverse Voltage per LED Chip	5 V	$6 \mathrm{~V}^{[6]}$		
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}^{[7]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Wave Soldering Temperature 1.6 mm ($1 / 16$ inch) below Body	$250^{\circ} \mathrm{C}$ for 3 seconds			

Notes:

1. Derate above $87{ }^{\circ} \mathrm{C}$ at $1.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $91^{\circ} \mathrm{C}$ at $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate above $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate above $50^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ per LED chip. For DC operation, derate above $60^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. See Figure 1 to establish pulsed operation. Maximum pulse width is 1.5 mS .
5. See Figure 6 to establish pulsed operation. Maximum pulse width is 2 mS .
6. Does not apply to bicolor parts.
7. For operation below $-20^{\circ} \mathrm{C}$, contact your local Avago sales representative.

Electrical/ Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ AIGaAs Red HLCP-X100 Series

Parameter	HLCP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	A100/D100/E 100	I_{V}	3	7.5		mcd	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$
	B100/C100/F 100/G100		6	15		mod	
	H100		12	30		mod	
Peak Wavelength		$\lambda_{\text {PEAK }}$		645		nm	
Dominant Wavelength ${ }^{\text {[2] }}$		λ_{d}		637		nm	
Forward Voltage per LED		V_{F}		1.8	2.2	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED		V_{R}	5	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED J unction-to-Pin		$R \theta_{\text {J-PIN }}$		250		$\begin{aligned} & \text { º/W/ } \\ & \text { LED } \end{aligned}$	

High Efficiency Red HLM P-2300/ 2600/ 2900 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	2300/2600/2620	I_{v}	6	23		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	2350/2635/2655/2670/2950 ${ }^{[3]}$		13	45		mcd	
	2965 ${ }^{[4]}$		19	45		mcd	
	2685		22	80		mcd	
Peak Wavelength		$\lambda_{\text {peak }}$		635		nm	
Dominant Wavelength ${ }^{[2]}$		$\lambda_{\text {d }}$		626		nm	
Forward Voltage per LED		V_{F}		2.0	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED ${ }^{[5]}$		$V_{\text {R }}$	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED J unction-to-Pin		$R \theta_{\text {J-PIN }}$		150		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{N} / \\ & \text { LED } \end{aligned}$	

Yellow HLM P-2400/ 2700/ 2950 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
$\begin{array}{l}\text { Luminous Intensity } \\ \text { per Lighting Emitting } \\ \text { Area }\end{array}$	$2400 / 2700 / 2720$	$2450 / 2735 / 2755 / 2770 / 2950^{[3]}$					

High Performance Green HLM P-2500/ 2800/ 2965 Series

Parameter	HLMP-	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Luminous Intensity per Lighting Emitting Area ${ }^{[1]}$	2500/2800/2820	I_{v}	5	25		mcd	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	2550/2835/2855/2870		11	50		mod	
	$2965{ }^{[4]}$		25	50		mcd	
	2885		22	100		mod	
Peak Wavelength		$\lambda_{\text {pEAK }}$		565		nm	
Dominant Wavelength ${ }^{[2]}$		λ_{d}		572		nm	
Forward Voltage per LED		V_{F}		2.2	2.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
Reverse Breakdown Voltage per LED ${ }^{[5]}$		V_{R}	6	15		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
Thermal Resistance LED J unction-to-Pin		$R \theta_{\text {J-PIN }}$		150		$\begin{aligned} & \text { º } \mathrm{C} / \mathrm{W} / \\ & \text { LED } \end{aligned}$	

Notes:

1. These devices are categorized for luminous intensity. The intensity category is designated by a letter code on the side of the package.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and is the single wavelength which defines the color of the device. Yellow and Green devices are categorized for dominant wavelength with the color bin designated by a number code on the side of the package.
3. This is an HER/Yellow bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Yellow electrical/optical characteristics are shown in the Yellow table.
4. This is an HER/Green bicolor light bar. HER electrical/optical characteristics are shown in the HER table. Green electrical/optical characteristics are shown in the Green table.
5. Does not apply to HLMP-2950 or HLMP-2965.

Figure 1. Maximum Allowable Peak Current vs. Pulse Duration.

Figure 2. Maximum Allowed DC Current per LED vs. Ambient Temperature, $\mathrm{T}, \mathrm{MAX}=110^{\circ} \mathrm{C}$.

Figure 4. Forw ard Current vs. Forward Voltage.

Figure 3. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LE D Current.

Figure 5. Relative Luminous Intensity vs. DC Forward Current.

Figure 6. Maximum Allowed Peak Current vs. Pulse Duration.

Figure 7. Maximum Allowable DC Current per LED vs. Ambient Temperature, T_{J} MAX $=100^{\circ} \mathrm{C}$.

Figure 9. Forw ard Current vs. Forw ard Voltage Characteristics.

Figure 8. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

Figure 10. Relative Luminous Intensity vs. DC Forward Current.

For a detailed explanation on the use of data sheet information and recommended soldering procedures, see Application Notes 1005, 1027, and 1031.

Intensity Bin Limits (mcd)

HLM P-2300/ 2600/ 2620 Annunciators (. 2 x . 4 HER/ AIGaAs), HLCP-A100/ D100/ E100

IV Bin Category	Min.	Max.
A	3.00	5.60
B	4.50	8.20
C	6.80	12.10
D	10.10	18.50
E	15.30	27.80
F	22.80	45.50
G	36.90	73.80

Notes

1. Minimum category A for Red L/C AIGaAs (-A100/-D100/-E100).
2. Minimum category C for HER (-2300/-2600/-2620)

HLM P-2350/ 2635/ 2655/ 2670 Annunciators (. 2 x . 8 HER/ AIGaAs), HLCP-B100/ C100/ F100/ G100 (.4 x . 4 HER/ AIGaAs)

IV Bin Category	Min.	Max.
A	5.40	10.90
B	9.00	16.00
C	13.10	24.00
D	19.70	36.10
E	29.60	54.20
F	44.90	88.80
G	71.90	143.80

Notes:

1. Minimum category A for Red L/C AIGaAs (-B100/-C100/-F 100/-G100)
2. Minimum category C for HER (-2350/-2635/-2670).

HLM P- 2685/ HLCP-H100 Annunciators (. 4×1 HER/ AIGaAs)

IV Bin Category	Min.	Max.
A	10.80	22.00
B	18.00	27.10
C	22.00	40.80
D	33.30	61.10
E	50.00	91.80
F	75.10	150.00
G	121.70	243.40
Notes: 1. Minimum category A for Red L/C AIGaAs (-H100). 2. Minimum category C for HER (-2685).		

HLM P- 2400/ 2700/ 2720 Annunciators (2 x . 4 Yellow)

IV Bin Category	Min.	Max.
C	6.10	11.20
D	9.20	16.80
E	13.80	25.30
F	20.70	41.40
G	33.60	67.20

HLM P-2450/ 2735/ 2755/ 2770 Annunciators (.2 x .8 Yellow \& . $4 \times .4$ Yellow)

IV Bin Category	Min.	Max.
C	13.00	22.00
D	18.00	33.00
E	27.00	50.00
F	40.50	81.00
G	65.60	131.20

HLM P-2785 Annunciators (. $4 \times .8$ Yellow)

IV Bin Category	Min.	Max.
C	26.00	44.40
D	36.00	66.00
E	54.00	99.00
F	81.00	162.00
G	131.40	262.80

HLM P-2500/ 2800/ 2820 Annunciators (. 2 x . 4 Yellow)

IV Bin Category	Min.	Max.
C	5.60	10.20
D	8.40	15.30
E	12.60	23.10
F	18.90	37.80
G	30.60	61.20
H	49.50	97.90
I	80.10	158.40

HLM P- 2550/ 2835/ 2855/ 2870 Annunciators (. $2 \times .8 / .4 \times .4$ Green)

IV Bin Category	Min.	Max.
C	11.30	20.60
D	17.00	31.00
E	25.40	46.50
F	38.10	76.20
G	61.60	123.20
H	99.81	197.67
I	161.73	320.21

HLM P-2885 Annunciators (. 4×18 Green)

IV Bin Category	Min.	Max.
C	22.20	40.80
D	33.40	61.20
E	50.10	91.90
F	75.10	150.30
H	121.10	242.20
I	313.10	383.50

HLM P- 2950 Bi-Color Annunciators (. 4 x .4 HER/ Yellow)

IV Bin Category	Min.	Max.
Red Iv Categories		
C	11.30	20.60
D	17.00	31.00
E	25.40	46.50
F	38.10	76.20
G	61.60	123.20
Yellow Iv Categories		
C	13.00	22.00
D	18.00	33.00
E	27.00	50.00
F	40.50	81.00
G	65.60	131.20

HLM P- 2965 Bi-Color Annunciators (. $4 \times .4 / .2 \times .8$ HER/ Green)

IV Bin Category	Min.	Max.
Red Iv Categories		
D	19.70	36.10
E	29.60	54.20
F	44.90	88.80
G	71.90	143.80
Green Iv Categories		
B	7.50	13.90
C	11.30	20.60
D	17.00	31.00
E	25.40	46.50
F	38.10	76.20
G	61.60	123.20
H	100.00	200.00

Notes:

1. Minimum category D for LPE Green (-2965).
2. In green mode, the devices are to be color binned into standard color bins, per Table 2. (-2685).

Color Categories

Color		Bin	
	Dominant Wavelength (nm)		
	0	579.0	582.5
	1	581.5	585.0
	3	584.0	587.5
	2	586.5	590.0
	4	589.0	592.5
	5	591.5	595.0
Green	2	573.00	577.00
	3	570.00	574.00
	4	567.00	571.00
	5	564.00	568.00

Note:

All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representatives for further clarification/information.

Electrical

These light bars are composed of two, four, or eight light emitting diodes, with the light from each LED optically scattered to form an evenly illuminated light emitting surface.

The anode and cathode of each LED is brought out by separate pins. This universal pinout arrangement allows the LEDs to be connected in three possible configurations: parallel, series, or series parallel. The typical forward voltage values can be scaled from Figures 4 and 9. These values should be used to calculate the current limiting resistor value and typical power consumption. Expected maximum V_{F} values for driver circuit design and maximum power dissipation,
may be calculated using the following $\mathrm{V}_{\mathrm{F}} \mathrm{MAX}$ models:

AIGaAs Red HLCP-X100 series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8 \mathrm{~V}+\mathrm{I}_{\text {Peak }}(20 \Omega)$
For: $I_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=2.0 \mathrm{~V}+\mathrm{I}_{\text {peak }}(10 \Omega)$
For: $20 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 45 \mathrm{~mA}$
HER (HLMP-2300/2600/2900), Yellow (HLMP-2400/2700/2900) and Green (HLMP-2500/2800/ 2900) series
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.6+\mathrm{I}_{\text {Peak }}(50 \Omega)$ For: $5 \mathrm{~mA} \leq \mathrm{I}_{\text {Peak }} \leq 20 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{F}} \mathrm{MAX}=1.8+\mathrm{I}_{\text {Peak }}(40 \Omega)$
For: $I_{\text {Peak }} \geq 20 \mathrm{~mA}$
The maximum power dissipation can be calculated for any pulsed or DC drive condition. For DC operation, the maximum power

Optical

Size of Light E mitting Area	Surface Area	
	Sq. Metres	Sq. Feet
$8.89 \mathrm{~mm} \times 8.89 \mathrm{~mm}$	67.74×10^{-6}	729.16×10^{-6}
$8.89 \mathrm{~mm} \times 3.81 \mathrm{~mm}$	33.87×10^{-6}	364.58×10^{-6}
$8.89 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	135.48×10^{-6}	1458.32×10^{-6}
$3.81 \mathrm{~mm} \times 19.05 \mathrm{~mm}$	72.85×10^{-6}	781.25×10^{-6}

The radiation pattern for these light bar devices is approximately Lambertian. The luminous sterance may be calculated using one of the two following formulas:
$L_{v}\left(c d / m^{2}\right)=\frac{I_{v}(c d)}{A\left(m^{2}\right)}$
$\mathrm{L}_{v}($ footlamberts $)=\frac{\pi \mathrm{I}_{v}(\mathrm{~cd})}{\mathrm{A}\left(\mathrm{ft}^{2}\right)}$

Refresh rates of 1 kHz or faster provide the most efficient operation resulting in the maximum possible time average luminous intensity.

The time average luminous intensity may be calculated using the relative efficiency characteristic of Figure 3 or $8, \eta 1_{\text {peak }}$, and adjusted for operating ambient temperature. The time average luminous intensity at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ is calculated as follows:
dissipation is the product of the maximum forward voltage and the maximum forward current. For pulsed operation, the maximum power dissipation is the product of the maximum forward voltage at the peak forward current times the maximum average forward current. Maximum allowable power dissipation for any given ambient temperature and thermal resistance ($\mathrm{R} \theta_{J-A}$) can be determined by using Figure 2 or 7 . The solid line in Figure 2 or $7\left(\mathrm{R} \mathrm{\theta}_{\mathrm{J}-\mathrm{A}}\right.$ of 600/538 C/W) represents a typical thermal resistance of a device socketed in a printed circuit board. The dashed lines represent achievable thermal resistances that can be obtained through improved thermal design. Once the maximum allowable power dissipation is determined, the maximum pulsed or DC forward current can be calculated.

$$
I_{\text {vTME AVG }}=\left[\frac{l_{\text {AVG }}}{\left.\frac{l_{\text {TEsT }}}{}\right]\left(\eta \eta_{\text {Peak }}\right)\left(I_{\mathrm{V}} \text { Data Sheet }\right) ~}\right.
$$

where:
$I_{\text {TEst }}=3 \mathrm{~mA}$ for AlGaAs Red (HLMP-X000 series) 20 mA for HER, Yellow and Green (HLMP-2XXX series)

Example:
For HLMP-2735 series

$$
\eta \mathrm{I}_{\text {PEAK }}=1.18 \text { at } \mathrm{I}_{\text {PEAK }}=48 \mathrm{~mA}
$$

$$
\mathrm{I}_{\mathrm{vtime} \mathrm{aVg}}=\left[\frac{12 \mathrm{~mA}}{20 \mathrm{~mA}}\right](1.18)(35 \mathrm{mcd})
$$

$$
=25 \mathrm{mcd}
$$

The time average luminous intensity may be adjusted for operating ambient temperature by the following exponential equation:
$I_{V}\left(T_{A}\right)=I_{V}\left(25^{\circ} C\right) e^{\left[K\left(T_{A}-25^{\circ} C\right)\right]}$

Color	\mathbf{K}
AlGaAs Red	$-0.0095 /{ }^{\circ} \mathrm{C}$
HER	$-0.0131 /{ }^{\circ} \mathrm{C}$
Yellow	$-0.0112 /{ }^{\circ} \mathrm{C}$
Green	$-0.0104 /{ }^{\circ} \mathrm{C}$

Example:
$\quad \mathrm{I}_{\mathrm{V}}\left(80^{\circ} \mathrm{C}\right)=(25 \mathrm{mcd}) \mathrm{e}^{[-0.0112(80-25)]}$
$=14 \mathrm{mcd}$.

Mechanical

These light bar devices may be operated in ambient temperatures above $+60^{\circ} \mathrm{C}$ without derating when installed in a PC board configuration that provides a thermal resistance pin to ambient value less than $280^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{LED}$. See Figure 2 or 7 to determine the maximum allowed thermal resistance for the PC board, $R \theta_{\mathrm{PC}-\mathrm{A}}$, which will permit nonderated operation in a given ambient temperature.

To optimize device optical performance, specially developed plastics are used which restrict the solvents that may be used for cleaning. It is recommended that only mixtures of Freon (F113) and alcohol be used for vapor cleaning processes, with an
immersion time in the vapors of less than two (2) minutes maximum. Some suggested vapor cleaning solvents are Freon TE, Genesolv DES, Arklone A or K. A $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ water cleaning process may also be used, which includes a neutralizer rinse (3\% ammonia solution or equivalent), a surfactant rinse (1% detergent solution or equivalent), a hot water rinse and a thorough air dry. Room temperature cleaning may be accomplished with Freon T-E35 or T-P35, Ethanol, Isopropanol or water with a mild detergent.

For further information on soldering LEDs please refer to Application Note 1027.

