
General Description

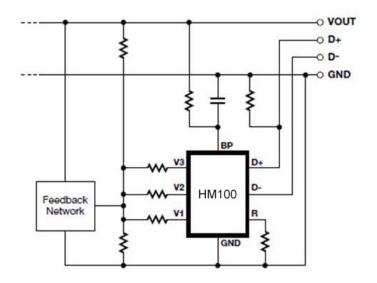
HM100 is designed to support QuickCharge QC 2.0 ■ (QC2.0) specifications. It is a low-cost solution to support QC2.0 functions. HM100 incorporates all ■ necessary functions to add QC2.0 capability to standard Adaptor designs, Portable Battery designs, ■ and Car-charger designs.

HM100 supports the full output voltage range of either ■ Class A or Class B. Optionally Class B can be inhibited for protecting the battery charger from ■ accidental damage.

HM100 automatically detects whether a connected ■ Powered Device (PD) is QC2.0 capable before ■ enabling output voltage adjustment. If a PD that is not compliant to QC2.0 is detected the HM100 disables ■ output voltage adjustment to ensure safe operation ■ with legacy 5 V only USB PDs.

Pin Configuration

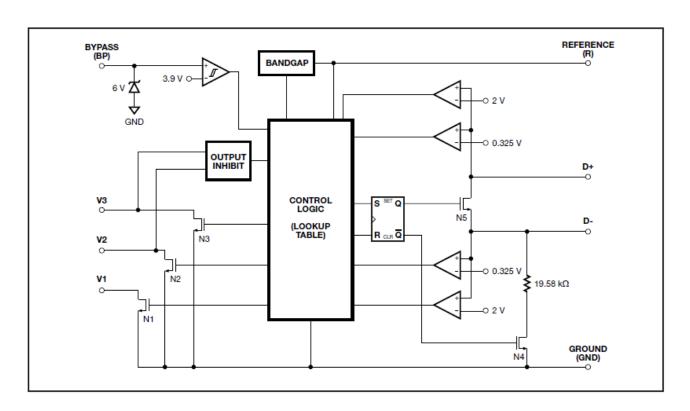
Features


- Fully supports Quick Charge 2.0 specification
- Class A: 5 V, 9 V, and 12 V output voltage
- Class B: 5 V, 9 V, 12 V, and 20 V output voltage
- USB battery charging specification revision 1.2 compatible
- Automatic USB DCP shorting D+ to D- line
- Default 5 V mode operation
- Very low power consumption
- Less than 1 mW at 5 V output
- Fail safe operation
- Adjacent pin-to-pin short-circuit fault
- Open circuit pin fault

Applications

- Adaptors for smart phones, tablets, netbooks, digital cameras, and bluetooth accessories
- Portable Battery Packs supporting QC.20 functions
- Car Cargers supporting QC2.0 functions
- Ogther USB power output ports supporting QC2.0 functions

Typical Application



Pin Description

	in Beechpaen					
NO.	Pin Name	Pin Function Description				
1	GND	Ground				
2	V1	Open Drain input of output voltage adjustment switch.				
		Active for 9 V, 12 V, and 20 V output setting.				
3	V2	Open Drain input of output voltage adjustment switch.				
		Active for 12 V, and 20 V output setting.				
4	V3	Open Drain input of output voltage adjustment switch.				
		Active for 20 V output setting.				
5	D-	USB D- data line input.				
6	D+	USB D+ data line input.				
7	R	Connected to internal band-gap reference. Provides reference current through				
		connected resistor.				
8	BP	Connection point for an external bypass capacitor for the internally generated supply				
		voltage.				

Functional Block Diagram

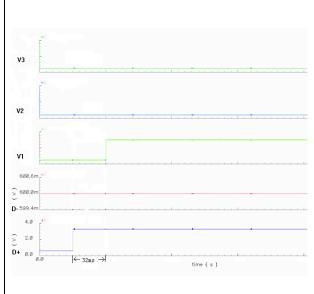
Absolute Maximum Ratings

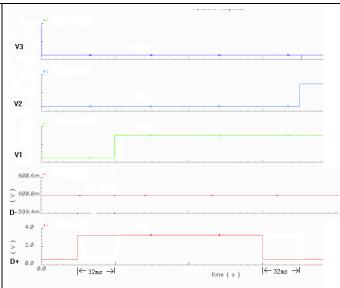
Symbol	Parameter	Maximum	Units
V_{BP}	BYPASS Pin Voltage	5.6	V
V _R	V _R REFERENCE Pin Voltage		V
V _{V1/V2/V3}	V1/V2/V3 Pin Voltage	V_{BP}	V
V _{D+/D-}	D+/D- Pin Voltage	5	V
I _{BP}	BYPASS Pin Current	15	mA
I _{V1/V2/V3}	V1/V2/V3 Pin Current	0.5	mA
I _{D+/D} -	D+/D- Pin Current	1	mA

Note: V_{V1/V2/V3} 电压不能大于 V_{BP}

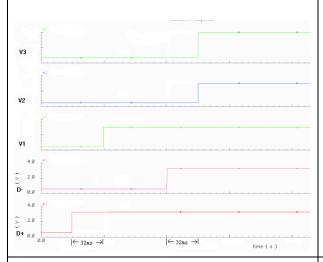
Recommended Operating Conditions

QC2.0 Interface Module


Symbol	Parameter	Maximum	Units
T _J	Operating Junction Temperature	-20 to 125	${\mathbb C}$
T _A	Operating Ambient Temperature	-20 to 85	${\mathbb C}$
T _s	Storage Temperature	-65 to150	$^{\circ}$
	Lead Temperature (less than 15 seconds)	260	$^{\circ}$


Electrical Characteristics (Vcc=5V; Tj=25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BP}	BYPASS Pin Voltage		4	5		V
V _{BP (reset)}	Power-Up Reset Threshold		3.8			V
	Voltage					
I _{BPSC}	BYPASS Pin Source Current	$V_{BP} = 4.3 \text{ V}, T_{J} =$		140		μА
		25 °CN1 = N2 = N3 =				
		Off				
I _{BP(SHUNT)}	BYPASS Pin Shunt Voltage	I _{BP} =3mA	5.0	5.3	5.6	V
V_R	REFERENCE Pin Voltage		1.22	1.27	1.32	V
$V_{DAT(REF)}$	Data Detect Voltage			0.325		V
V _{SEL(REF)}	Output Voltage Selection			2		V
	Reference					
V _{INH}	12 V / 20 V Output Inhibit		V _{BP} -0.8			V
	Threshold					
I _{DAT(SHORT)}	Data Lines Short-Circuit	VOUT ≥ 0.8 V		18		μ s
	Delay					
T _{GLITCH}	D+ High Glitch Filter Time			1250		ms
Tglitch(v) change	Output Voltage Glitch Filter			32		ms
	Time					
R _{DM(DWN)}	D- Pull-Down Resistance			19.53		Ω
Rds(on)ni	Switch N1 On-Resistance	I _{N1} =200μA			300	Ω
Rds(on)n2	Switch N2 On-Resistance	I _{N2} =200μA			300	Ω
Rds(on)n3	Switch N3 On-Resistance	I _{N3} =200μA			300	Ω
Rds(on)n4	Switch N4 On-Resistance	I _{N4} =200μA			300	Ω
R _{DSN5}	Switch N5 On-Resistance	I _{N1} =200 μ A, V _{D+} ≤3.6V			40	Ω



Typical Performance Characteristics

握手完成后, D+, D-输入 0.6V; D+由 0.6V 升到 3.3V, V1 打开 握手完成后, D+, D-输入 0.6V; D+由 0.6 升到 3.3V, V1 打开, D+由 3.3V 下降到 0.6V, V1/V2 打开

D+	D-	Output	Switch Status
0.6 V	0.6 V	12 V	N1 = N2 = On, N3 = Off
3.3 V	0.6 V	9 V	N1 = On, N2 = N3 = Off
3.3 V	3.3 V	20 V	N1 = N2 = N3 = On
0.6 V	GND	5 V (default)	N1 = N2 = N3 = Off

握手完成后, D+, D-输入 0.6V; D+由 0.6升 到 3.3V, V1 打开, D-由 0.6升到 3.3V, V1/V2/V3 打开

Applications Information

HM100 is a low-cost USB high-voltage dedicated **Shunt Regulator** charging port interface IC for the Quick Charge 2.0 specification. It incorporates all necessary functions to add Quick Charge 2.0 capability to standard Adaptors, Car-chargers, and Portable Battery Packs.

HM100 also traditional feedback schemes like opto-coupler and secondary reference regulator SE431 as depicted in Figure 1.

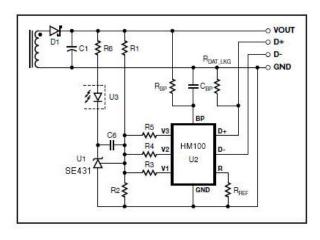


Figure 1. HM100 with Traditional Output Regulation (CV Only).

HM100 supports the full output voltage range of At power-up HM100 turns on s witch N5 (see Quick Charge 2.0 Class A (5 V, 9 V, or 12 V) or Class B (5 V, 9 V, 12 V, or 20 V). It automatically detects either Quick Charge 2.0 capable powered devices (PD) or legacy PDs compliant with the USB Battery Charging Specification revision 1.2 a nd only enables output voltage adjustment accordingly.

The internal shunt regulator clamps the BYPASS pin at 6 V when current is provided through an external resistor (R_{BP} in Figure 1). This facilitates powering of HM100 externally over the wide power supply output voltage range of 5 V supports other solutions with to 20 V. Recommended values are $R_{BP} = 4.7 \text{ k}\Omega$ and $C_{BP} = 220 \text{ nF}$.

BYPASS Pin Undervoltage

The BYPASS pin undervoltage circuitry resets the HM100 when the BYPASS pin voltage drops below 3.9 V. Once the BYPASS pin voltage drops below 3.9 V it must rise back to 4 V to enable correct operation.

Reference Input

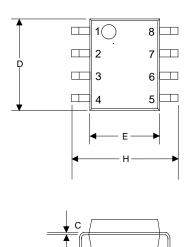
Resister RREF at the REFERENCE pin is connected to an internal band gap reference and provides an accurate reference current for internal timing circuits. The recommended value is RREF = $127 \text{ k}\Omega$.

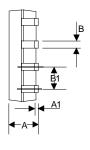
Quick Charge 2.0 Interface

Figure 3) in 20 ms or less after the BYPASS pin voltage has reached 4 V. Switch N4 and output switches N1 to N3 remain off. This sets the default 5 V output voltage level. With D+ and Dshort-circuited the normal handshake between the AC-DC adapter (DCP) and powered devices (PD) as described in the USB Battery Charging Specification 1.2 c an commence. After switch N5 has been turned on HM100 starts monitoring the voltage level at D+. If it continuously stays At USB cable disconnect the voltage level at D+

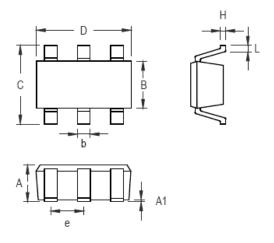
above V_{DAT(REF)} (typ. 0.325 V) and below is pulled down by resistor R_{DAT(LKG)} (see Figure V_{SEL(REF)} (typ. 2 V) for at least 1.25 seconds 1). Once it drops below 0.325 V HM100 will turn HM100 will enter Quick Charge 2.0 op eration on switch N5 (thereby short-circuiting D+ and mode. If the voltage at D+ drops any time below D-) and turns off switches N1 to N4. This sets 0.325 V HM100 resets the 1.25 seconds timer and the default output voltage of 5 V. The stays in USB Battery Charging Specification 1.2 recommended value for RDAT(LKG) = 390 k Ω . compatibility mode with a default output voltage of 5 V.

operation mode switch N5 will be turned off. Additionally switch N4 is turned on connecting a 19.53 k Ω pull-down resistor to D-. As soon as the voltage at D- has dropped low (<0.325 V) for at least 1 ms HM100 starts accepting requests for different AC-DC adapter output voltages by means of applied voltage levels at data lines D+ and D- through the powered device. Table 1 summarizes the output voltage lookup table, corresponding AC-DC adapter output voltages and status of switches N1 to N3.


D+	D-	Output	Switch Status
0.6 V	0.6 V	12 V	N1 = N2 = On, N3 = Off
3.3 V	0.6 V	9 V	N1 = On, N2 = N3 = Off
3.3 V	3.3 V	20 V	N1 = N2 = N3 = On
0.6 V	GND	5 V (default)	N1 = N2 = N3 = Off


For Quick Charge 2.0 Class A support only, the V3 pin has to be connected to the BYPASS pin (directly or through a resistor up to 100 k Ω). This will inhibit any requests for setting a 20 V output.

of 5 V.
$$V_{o1}(5V)=V_{FB}*((R_1/R_2)+1);$$
 Once HM100 has entered Quick Charge 2.0 $V_{o2}(9V)=V_{FB}*((R_1/R_{X1})+1), R_{X1}=R_2//R_3;$ operation mode switch N5 will be turned off. $V_{o3}(12V)=V_{FB}*((R_1/R_{X2})+1), R_{X2}=R_{X1}//R_4;$ Additionally switch N4 is turned on connecting a $V_{o4}(20V)=V_{FB}*((R_1/R_{X3})+1), R_{X3}=R_{X2}//R_5;$


OUTLINE DRAWING SOP-8

DIMENSIONS					
DIM ^N	INCHES		MM		
וווטו	MIN	MAX	MIN	MAX	
Α	0.0532	0.0688	1.35	1.75	
A1	0.0040	0.0098	0.10	0.25	
В	0.0130	0.0200	0.33	0.51	
B1	0.050 BSC		1.27 BSC		
C	0.0075	0.0098	0.19	0.25	
D	0.1890	0.1968	4.80	5.00	
Ι	0.2284	0.2440	5.80	6.20	
Е	0.1497	0.1574	3.80	4.00	

OUTLINE DRAWING SOT-23-6L

Cumphal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
А	0.889	1.295	0.031	0.051
A1	0.000	0.152	0.000	0.006
В	1.397	1.803	0.055	0.071
b	0.250	0.560	0.010	0.022
С	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
е	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024