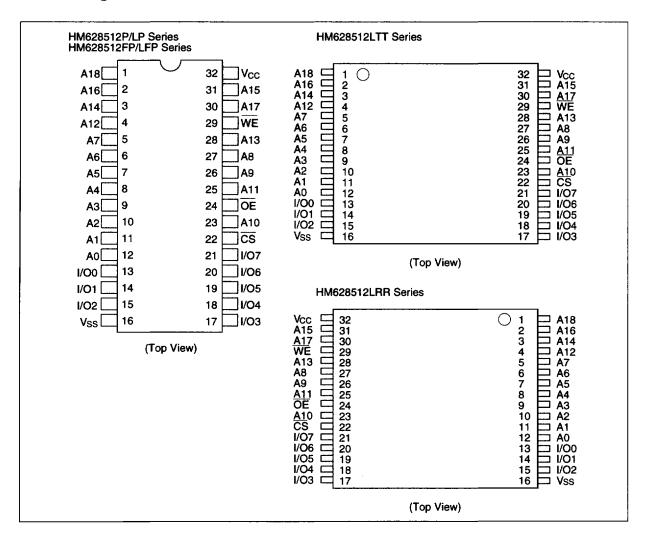
524288-word × 8-bit High Speed CMOS Static RAM

HITACHI

ADE-203-236F (Z) Rev. 6.0 Jun. 9, 1995

Description

The Hitachi HM628512 is a 4-Mbit static RAM organized 512-kword \times 8-bit. It realizes igher density, higher performance and low power consumption by employing 0.5 μ m Hi-CMOS process technology. The device, packaged in a 525-mil SOP (foot print pitch width) or 400-mil TSOP TYPE II or 600-mil plastic DIP, is available for high density mounting. LP-version is suitable for battery backup system.

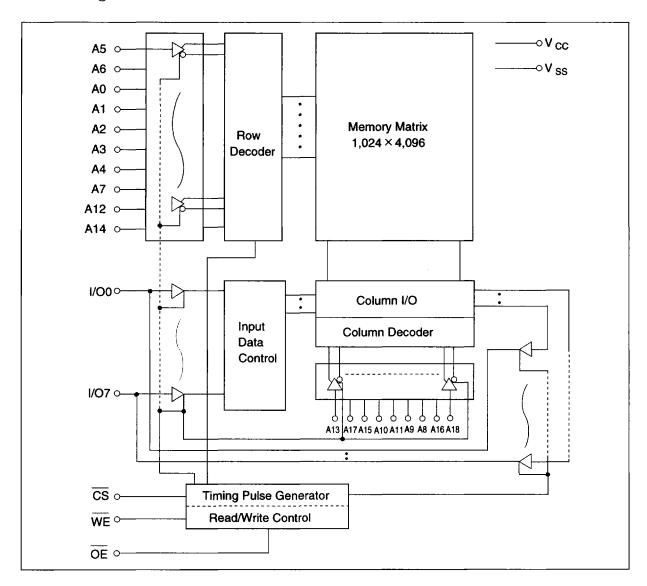

Features

- High speed: Fast access time:
 - 55/65/70 ns (max)
- Low power
 - Standby: 10 µW (typ) (L/L-SL version)
 - Operation: 75 mW (typ) (f = 1 MHz)
- Single 5 V supply
- Completely static memory
 - No clock or timing strobe required
- · Equal access and cycle times
- Common data input and output: Three state output
- Directly TTL compatible: All inputs and outputs
- Capability of battery backup operation (L/L-SL version)

Ordering Information

Type No.	Access Time	Package
HM628512P-5	55 ns	600-mil 32-pin plastic DIP (DP-32)
7 HM628512P-7	70 ns	_
HM628512LP-5	55 ns	
HM628512LP-7A	65 ns	
HM628512LP-7	70 ns	
HM628512LP-5SL	55 ns	_
HM628512LP-7SL	70 ns	
HM628512FP-5	55 ns	525-mil 32-pin plastic SOP (FP-32D)
HM628512FP-7	70 ns	
HM628512LFP-5	55 ns	_
HM628512LFP-7A	65 ns	
HM628512LFP-7	70 ns	
HM628512LFP-5SL	55 ns	_
HM628512LFP-7SL	70 ns	
HM628512LTT-5	55 ns	400-mil 32-pin plastic TSOP II (TTP-32D)
HM628512LTT-7A	65 ns	
HM628512LTT-7	70 ns	
HM628512LTT-5SL	55 ns	_
HM628512LTT-7SL	70 ns	
HM628512LRR-5	55 ns	400-mil 32-pin plastic TSOP II reverse (TTP-32DR)
HM628512LRR-7A	65 ns	· · · · · · · · · · · · · · · · · · ·
HM628512LRR-7	70 ns	
HM628512LRR-5SL	55 ns	_
HM628512LRR-7SL	70 ns	

Pin Arrangement



Pin Description

Pin name	Function
A0 – A18	Address
1/00 – 1/07	Input/output
CS	Chip select
ŌĒ	Output enable
WE	Write enable
V _{cc}	Power supply
V _{ss}	Ground

147

Block Diagram

Function Table

WE	CS	ŌĒ	Mode	V _{cc} Current	Dout Pin	Ref. Cycle
Х	Н	Х	Not selected	I _{SB} , I _{SB1}	High-Z	
Н	L	Н	Output disable	Icc	High-Z	
Н	L	L	Read	Icc	Dout	Read cycle
L	L	Н	Write	I _{cc}	Din	Write cycle (1)
L	L	L	Write	Icc	Din	Write cycle (2)

Note: X: H or L

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{ss} ^{'1}	V _T	-0.5 ⁻² to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Notes: 1. Relative to V_{ss}.

2. -3.0 V for pulse half-width ≤ 30 ns

Recommended DC Operating Conditions (Ta = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{cc}	4.5	5.0	5.5	٧
	V _{ss}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2		6.0	V
Input low (logic 0) voltage	V _{IL}	-0.31		0.8	V

Note: 1. -3.0 V for pulse half-width ≤ 30 ns

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V $\pm 10\%$, V_{SS} = 0 V)

Parameter		Symbol	Min	Typ"	Max	Unit	Test Conditions
Input leakage current		II _{LI} I	_		1	μА	Vin = V _{ss} to V _{cc}
Output leakage current		II _{LO} I	_	_	1	μА	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}, V_{VO} = V_{SS} \text{ to } V_{CC}$
Operating power supply current: DC	Operating power supply current: DC		_	15	25	mA	$\overline{CS} = V_{IL}, \overline{WE} = V_{IH}$ others = $V_{IH}/V_{IL}, I_{I/O} = 0 \text{ mA}$
		I _{CC WRITE}		20	45	mA	$\overline{CS} = V_{iL}, \overline{WE} = V_{iL}$ others = V_{iL}/V_{iL} , $I_{i/O} = 0$ mA
Operating power supply current	-5/7A	I _{CC1}	_	70	100	mA	Min cycle, duty = 100%
	-7	I _{CC1}		60	90	mA	$\overline{CS} = V_{IL}$, others = V_{IH}/V_{IL} $I_{VO} = 0 \text{ mA}$
Operating power supply current		I _{CC2}	unitaria.	15	30	mA	Cycle time = 1 μ s, duty = 100% I _{VO} = 0 mA, $\overline{CS} \le 0.2 \text{ V}$ V _{IH} \ge V _{CC} $-$ 0.2 V, V _{IL} \le 0.2 V
Standby power supply current: DC		I _{SB}		1	3	mA	CS = V _{IH}
Standby power supply current (1): DC	;	I _{SB1}		0.02	2	mA	Vin ≥ 0 V, CS ≥ V _{cc} – 0.2 V
			_	2	100*2	μА	
			_	2	50 ^{*3}	μА	
Output low voltage		V _{OL}	_	_	0.4	٧	I _{OL} = 2.1 mA
Output high voltage		V _{OH}	2.4	_		٧	I _{OH} = -1.0 mA

Notes: 1. Typical values are at V_{cc} = 5.0 V, Ta = +25°C and specified loading, and not guaranteed.

- 2. This characteristics is guaranteed only for L version.
- 3. This characteristics is guaranteed only for L-SL version.

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Тур	Max	Unit	Test Conditions
Input capacitance ¹	Cin	eutrasia.	8	pF	Vin = 0 V
Input/output capacitance ¹	C _{vo}	_	10	pF	V _{VO} = 0 V

Note: 1. This parameter is sampled and not 100% tested.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V ± 10%, unless otherwise noted.)

Test Conditions

• Input pulse levels: 0.8 V to 2.4 V

• Input rise and fall time: 5 ns

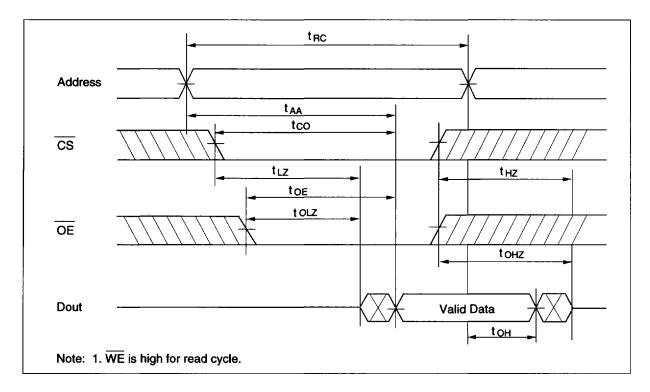
• Input and output timing reference levels: 1.5 V

Output load: 1 TTL Gate + C_L (100 pF) (HM628512-7A/7)

1 TTL Gate + C_L (50 pF) (HM628512-5)

(Including scope & jig)

Read Cycle


1.1	44	62	۰	E	4	•
п	W	ᅂ	0	J	1	4

		-5	-5		-7 A		-7		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	55	_	65	_	70		ns	
Address access time	t _{AA}	_	55	_	60	_	70	ns	·
Chip select access time	t∞		55	_	65		70	ns	
Output enable to output valid	toE	_	25		30		35	ns	
Chip selection to output in low-Z	t _{LZ}	10	_	10	_	10	_	ns	2
Output enable to output in low-Z	t _{oLZ}	5	_	5	_	5	_	ns	2
Chip deselection to output in high-Z	t _{HZ}	0	20	0	20	0	25	ns	1, 2
Output disable to output in high-Z	t _{oHZ}	0	20	0	20	0	25	ns	1, 2
Output hold from address change	t _{oH}	10	-	10		10	_	ns	

Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referred to output voltage levels.

2. This parameter is sampled and not 100% tested.

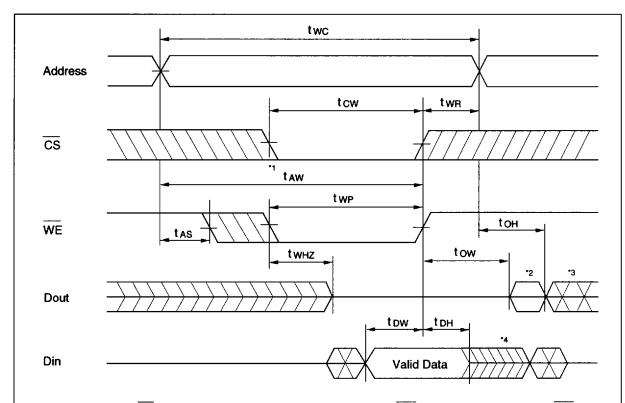
Read Timing Waveform*1

Write Cycle

HM628512

		-5		-7A		-7			
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Notes
Write cycle time	t _{wc}	55	-	55		70	_	ns	
Chip selection to end of write	t _{cw}	50		50	_	60		ns	2
Address setup time	t _{AS}	0		0	_	0	*****	ns	3
Address valid to end of write	t _{AW}	50		50		60	_	ns	
Write pulse width	t _{we}	40	_	40		50	_	ns	1, 8
Write recovery time	t _{wR}	5	_	5		5	_	ns	4
WE to output in high-Z	t _{wHZ}	0	20	0	20	0	25	ns	5, 6, 7
Data to write time overlap	t _{DW}	25		25	_	30	_	ns	
Data hold from write time	t _{DH}	0	_	0		0		ns	
Output active from output in high-Z	tow	5		5	_	5		ns	6
Output disable to output in high-Z	t _{oHZ}	0	20	0	20	0	25	ns	5, 6

Notes: 1. A write occurs during the overlap (t_{wp}) of a low \overline{CS} and a low \overline{WE} . A write begins at the later transition of \overline{CS} going low or \overline{WE} going low. A write ends at the earlier transition of \overline{CS} going high or \overline{WE} going high. t_{wp} is measured from the beginning of write to the end of write.


- 2. t_{cw} is measured from \overline{CS} going low to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{wR} is measured from the earlier of \overline{WE} or \overline{CS} going high to the end of write cycle.
- 5. During this period, I/O pins are in the output state so that the input signals of the opposite phase to the outputs must not be applied.
- 6. This parameter is sampled and not 100% tested.
- t_{wHZ} is defined as the time at which the outputs acheive the open circuit conditons and is not referred to output voltage levels.
- In the write cycle with OE low fixed, t_{wP} must satisfy the following equation to avoid a problem of data bus contention. t_{wP} ≥ t_{DW} min + t_{wHZ} max

Write Timing Waveform (1) (OE Clock)

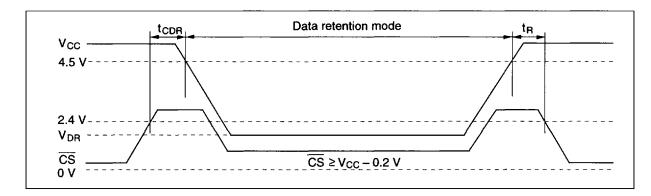
Note: 1. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.

Write Timing Waveform (2) (OE Low Fixed)

Notes: 1. If the $\overline{\text{CS}}$ low transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, the output remain in a high impedance state.

- 2. Dout is the same phase of the write data of this write cycle.
- 3. Dout is the read data of next address.
- 4. If $\overline{\text{CS}}$ is low during this period, I/O pins are in the output state. Therefore, the input signals of the opposite phase to the outputs must not be applied to them.

Low V_{CC} **Data Retention Characteristics** (Ta = 0 to +70°C)


This characteristics is guaranteed only for L/L-SL version.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions ³
V _{cc} for data retention	V _{DR}	2		_	٧	$\overline{\text{CS}} \ge \text{V}_{\text{cc}} - 0.2 \text{ V, Vin} \ge 0 \text{ V}$
Data retention current	I _{CCDR}		1*4	50 ¹	μА	V _{cc} = 3.0 V, Vin ≥ 0 V
		_	1.4	15 ²	μА	<u>CS</u> ≥ V _{cc} – 0.2 V
Chip deselect to data retention time	t _{CDR}	0		_	ns	See retention waveform
Operation recovery time	t _R	5	_		ms	

Notes: 1. For L-version and 20 μ A (max.) at Ta = 0 to 40°C.

- 2. For SL-version and 3 μ A (max.) at Ta = 0 to 40°C.
- 3. CS controls address buffer, WE buffer, OE buffer, and Din buffer. In data retention mode, Vin levels (address, WE, OE, I/O) can be in the high impedance state.
- 4. Typical values are at $V_{cc} = 3.0 \text{ V}$, $Ta = 25^{\circ}\text{C}$ and specified loading, and not guaranteed.

Low V_{CC} Data Retention Timing Waveform (\overline{CS} Controlled)

