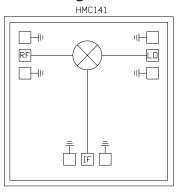
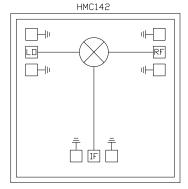


v01.0801

HMC141 / HMC142


GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 18 GHz


Typical Applications

The HMC141 & HMC142 is ideal for:

- UNII & HiperLAN
- Microwave & MMW Radios
- Military, Space & Test Equipment

Functional Diagram

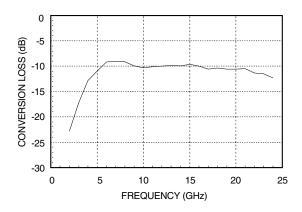
Features

Input IP3: +21 dBm

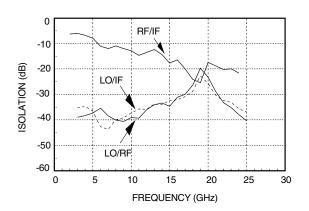
LO / RF Isolation: 25 to 40 dB IF Bandwidth: DC to 6 GHz Small Size: 1.48mm x 1.48mm

General Description

The HMC141 chip is a minature double-balanced mixer which can be used as an upconverter or downconverter. The HMC142 is identical to the HMC141 except that the layout is a mirror image designed to ease integration into image-reject mixer modules. Broadband operation and excellent isolations are provided by on-chip baluns, which require no external components and no DC bias. The design is similar to the HMC143/144 mixers but without an IF combiner, providing a broad DC to 6 GHz IF bandwidth. These devices are much smaller and more reliable than hybrid diode mixers for VSAT and point-to-point radios.

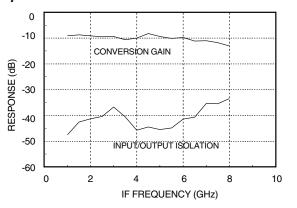

Electrical Specifications, $T_A = +25^{\circ}$ C, LO Drive = +20 dBm

Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF & LO	6 - 18			GHz
Frequency Range, IF	DC - 6			GHz
Conversion Loss		10	12	dB
Noise Figure (SSB)		10	12	dB
LO to RF Isolation	20	25		dB
LO to IF Isolation	20	25		dB
IP3 (Input)	16	21		dBm
IP2 (Input)	40	47		dBm
1 dB Gain Compression (Input)	5	10		dBm


GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 18 GHz

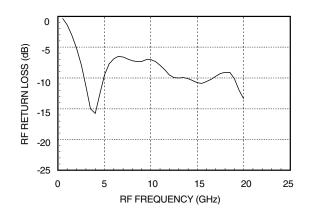
Conversion Loss

v01.0801

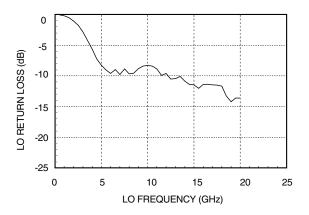

Isolation

Conversion Loss vs. LO Drive Level @ Several RF Frequencies

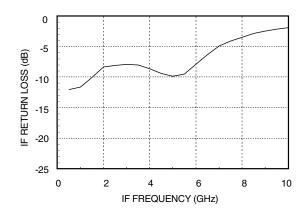
Upconverter Performance



Input at IF Port (1-8 GHz); Output at LO Port (9 GHz) Local Oscillator at RF Port (10-17 GHz)



GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 18 GHz


RF Return Loss

LO Return Loss

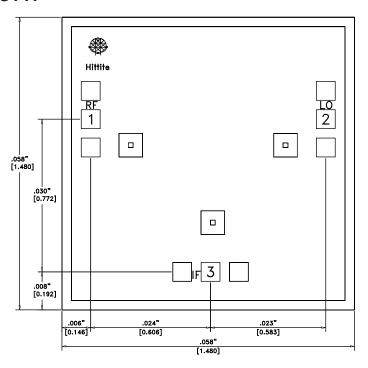
IF Return Loss

Distortion and 1dB Compression versus LO Drive Level

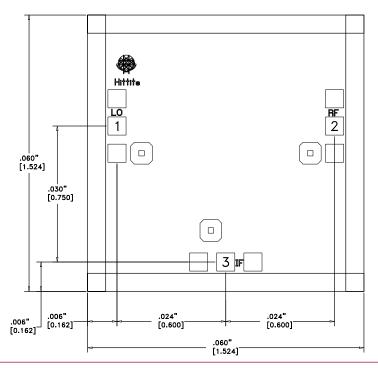
	Disto		
LO Drive	RF (f1) = 1 RF (f2) = 1 LO = 1	1 dB Compression	
(dBm)	IP3 (dBm)	IP2 (dBm)	P1dB (dBm)
+13	18	42	7
+15	21	45	10
+17	21	45	10

Absolute Maximum Ratings

LO Drive	+27 dBm	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	



GaAs MMIC DOUBLE-BALANCED MIXER, 6 - 18 GHz


Outline Drawings (See HMC141/142 Operation Application Note in Section 15)

v01.0801

HMC141

HMC142

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MM].
- 2. DIE THICKNESS IS .004".
- 3. TYPICAL BOND PAD IS .004" SQUARE.
- 4. BACKSIDE METALLIZATION: GOLD.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. BACKSIDE METAL IS GROUND.
- 7. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.