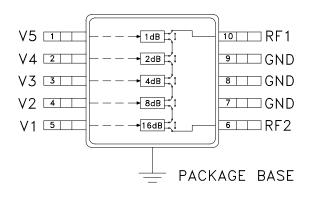


HMC273MS10G


1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Typical Applications

The HMC273MS10G is ideal for:

- Cellular
- PCS, ISM, MMDS
- WLL applications

Functional Diagram

Features

1 dB LSB Steps to 31 dB

Single Positive Control Per BIT

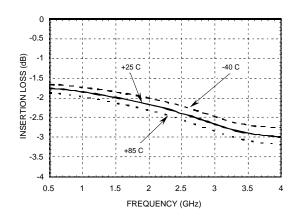
+/- 0.5 dB Typical Bit Error

Miniature MSOP 10 Package: 14.8mm²

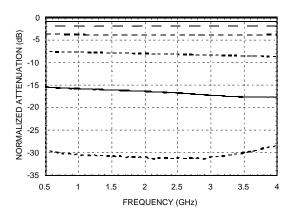
General Description

The HMC273MS10G is a broadband 5 - bit positive control GaAs IC digital attenuator in a 10 lead MSOP plastic package. Covering 0.7 to 3.7 GHz, the insertion loss is typically less than 2 dB. The attenuator bit values are 1 (LSB), 2, 4, 8, and 16 dB for a total attenuation of 31 dB. Accuracy is excellent at \pm 0.5 dB typical with an IIP3 of up to +48 dBm. Five bit control voltage inputs, toggled between 0 and +3 to +5 volts, are used to select each attenuation state. A single Vdd bias of +3 to +5 volts applied through an external 5K Ohm resistor is required.

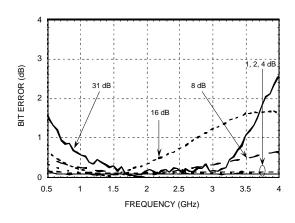
Electrical Specifications,

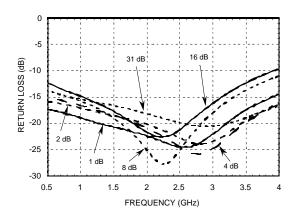

 $T_{\Delta} = +25^{\circ} \text{ C}$, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

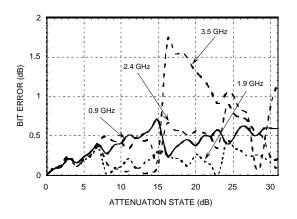
Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz		1.8	2.4	dB
		1.4 - 2.3 GHz		2.1	2.7	dB
		2.3 - 2.7 GHz		2.4	3.0	dB
		2.7 - 3.7 GHz		2.8	3.5	dB
Attenuation Range		0.7 - 3.7 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz	11	17		dB
		1.4 - 2.7 GHz	14	20		dB
		2.7 - 3.7 GHz	10	14		dB
Attenuation Accuracy: (Referenced to Insertion Loss	s)					
All Attenuation States		0.7 - 1.4 GHz	± 0.35 + 3	3% of Atten. Se	etting Max	dB
All Attenuation States		1.4 - 2.3 GHz	± 0.25 +	3% of Atten. Se	etting Max	dB
All Attenuation States		2.3 - 2.7 GHz	± 0.30 +	5% of Atten. Se	etting Max	dB
1 - 15 dB States		2.7 - 3.7 GHz	1	5% of Atten. Se	0	dB
16 - 31 dB States		2.7 - 3.7 GHz	± 0.50 + 8% of Atten. Setting Max		dB	
Input Power for 0.1 dB Compression	Vdd = 5V	0.7 - 3.7 GHz		24		dBm
·	Vdd = 3V			22		dBm
Input Third Order Intercept Point	Vdd = 5V	0.7 - 3.7 GHz		48		dBm
(Two-tone Input Power = 0 dBm Each Tone)	Vdd = 3V			46		dBm
Switching Characteristics		0.7 - 3.7 GHz				
tRISE, tFALL (10/90% RF)				560		ns
tON, tOFF (50% CTL to 10/90% RF)				600		ns

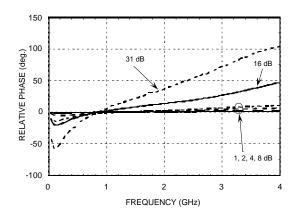


1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz


Insertion Loss


Normalized Attenuation (Only Major States are Shown)


Absolute Bit Error vs. Frequency (Only Major States are Shown)


Return Loss RF1, RF2 (Only Major States are Shown)

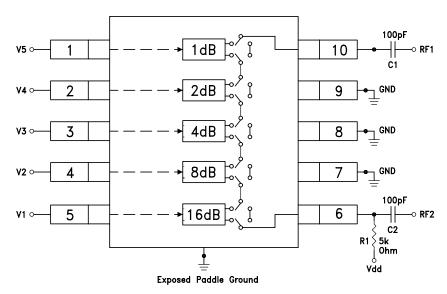
Absolute Bit Error vs. Attenuation State

Relative Phase vs. Frequency (Only Major States are Shown)

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg. C.).

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Truth Table


Control Voltage Input					Attenuation	
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	Setting RF1 - RF2	
High	High	High	High	High	Reference I.L.	
High	High	High	High	Low	1 dB	
High	High	High	Low	High	2 dB	
High	High	Low	High	High	4 dB	
High	Low	High	High	High	8 dB	
Low	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	31 dB Max. Atten.	
Any combination of the above states will provide an attenuation						

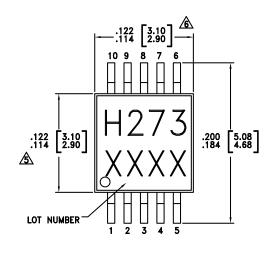
Control Voltages

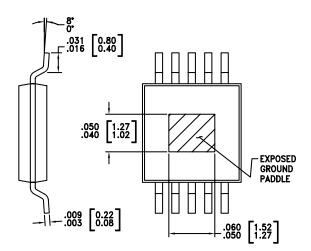
State	Bias Condition	
Low	0 to +0.2 V @ 20 uA Max	
High	igh Vdd ± 0.2V @ 100 uA Max	
Note: $Vdd = +3V$ to $5V \pm 0.2V$		

Application Circuit

approximately equal to the sum of the bits selected.

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \sim 300$ pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 6 or PIN 10.

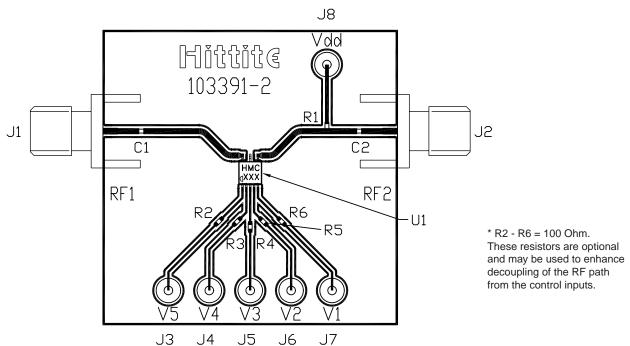



1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Absolute Maximum Ratings

Control Voltage (V1 - V5)	Vdd + 0.5 Vdc
Bias Voltage (Vdd)	+8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 3.7 GHz)	+26 dBm

Outline Drawing


NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Evaluation Circuit Board

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

List of Material

Item	Description	
J1 - J2	PC Mount SMA Connector	
J3 - J6	DC Pin	
R1	5k Ohm Resistor, 0402 Chip	
R2, R3, R4	100 Ohm Resistor, 0402 Chip	
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation	
U1	HMC273MS10G Digital Attenuator	
PCB*	103391 Evaluation PCB 1.5" x 1.5"	
*Circuit Board Material: Rogers 4350		

v02.1100

9

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.7 GHz

Notes: