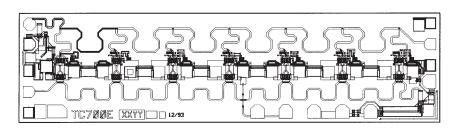


2–26.5 GHz GaAs MMIC Traveling Wave Amplifier

Technical Data


HMMC-5021 (2-22 GHz) HMMC-5022 (2-22 GHZ) HMMC-5026 (2-26.5 GHz)

Features

- Wide-Frequency Range: 2-26.5 GHz
- High Gain: 9.5 dB
- Gain Flatness: 0.75 dB
- Return Loss: Input: -14 dB Output: -13 dB
- Low-Frequency Operation Capability: < 2 GHz
- Gain Control: 35 dB Dynamic Range
- Moderate Power: 20 GHz: P_{.1dB}: 18 dBm P_{sat}: 20 dBm 26.5 GHz: P_{.1dB}: 15 dBm P_{sat}: 17 dBm

Description

The HMMC-5021/22/26 is a broadband GaAs MMIC Traveling Wave Amplifier designed for high gain and moderate output power over the full 2 to 26.5 GHz frequency range. Seven MESFET cascode stages provide a flat gain response, making the HMMC-5021/22/26 an ideal wideband gain block. Optical lithography is used to produce gate lengths of $\approx 0.4 \,\mu\text{m}$. The HMMC-5021/22/26 incorporates advanced MBE technology, Ti-Pt-Au gate metallization, silicon nitride passivation, and polyimide for scratch protection.

Chip Size: Chip Size Tolerance: Chip Thickness: Pad Dimensions: $\begin{array}{l} 2980\,x\,770\,\mu\text{m}\,(117.3\,x\,30.3\,\text{mils})\\ \pm\,10\,\mu\text{m}\,(\pm\,0.4\,\text{mils})\\ 127\pm\,15\,\mu\text{m}\,(5.0\pm\,0.6\,\text{mils})\\ 75\,x\,75\,\mu\text{m}\,(2.95\,x\,2.95\,\text{mils}),\,\text{or larger} \end{array}$

Absolute Maximum Ratings

Symbol	Parameters/Conditions	Units	Min.	Max. ^[1]	
V _{DD}	Positive Drain Voltage	V		8.0	
I _{DD}	Total Drain Current	mA		250	
V _{G1}	First Gate Voltage	V	-5	0	
I _{G1}	First Gate Current	mA	-9	+5	
V _{G2} [2]	Second Gate Voltage	V	-2.5	+3.5	
I _{G2}	Second Gate Current	mA	-7		
P _{DC}	DC Power Dissipation	watts		2.0	
P _{in}	CW Input Power	dBm		23	
T _{ch}	Operating Channel Temp.	°C		+150	
T _{case}	Operating Case Temp.	°C	-55		
T _{STG}	Storage Temperature	°C	-65	+165	
T _{max}	Maximum Assembly Temp. (for 60 seconds maximum)	°C		+300	

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage to this device. $T_A = 25^{\circ}C$ except for T_{ch} , T_{STG} , and T_{max} .

2. Minimum voltage on V_{G2} must not violate the following: $V_{G2}(min) > V_{DD} - 9$ volts.

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
IDSS	Saturated Drain Current $(V_{DD} = 7.0 V, V_{G1} = 0 V, V_{G2} = open circuit)$	mA	115	180	250
V_{p}	First Gate Pinch-off Voltage ($V_{DD} = 7.0 \text{ V}, I_{DD} = 16 \text{ mA}, V_{G2} = \text{open circuit}$)	V	-3.5	-1.5	-0.5
V _{G2}	Second Gate Self-Bias Voltage $(V_{DD} = 7.0 \text{ V}, V_{G1} = 0 \text{ V})$	V		2.1	
I _{DSOFF} (V _{G1})	First Gate Pinch-off Current $(V_{DD} = 7.0 \text{ V}, V_{G1} = -3.5 \text{ V}, V_{G2} = \text{open circuit})$	mA		4	
I _{DSOFF} (V _{G2})	Second Gate Pinch-Off Current ($V_{DD} = 5.0 \text{ V}, V_{G1} = 0 \text{ V}, V_{G2} = -3.5 \text{ V}$)	mA		8	
$\theta_{ch\text{-}bs}$	Thermal Resistance ($T_{backside} = 25^{\circ}C$)	°C/W		36	

HMMC-5021/22/26 DC Specifications/Physical Properties,^[1] applies to all part numbers

Note:

1. Measured in wafer form with $T_{chuck} = 25$ °C. (Except θ_{ch-bs} .)

2.0-22.0 GHz 2.0-26.5 GHz HMMC-5021 HMMC-5022 HMMC-5026 Symbol **Parameters/Conditions** Units Min. Typ. Тур. Max. Min. Typ. Max. BW Guaranteed Bandwidth GHz 2-22 $\mathbf{2}$ 22 $\mathbf{2}$ 26.5Small Signal Gain 10 8.0 12 7.512 S_{21} dB10 9.5 ΔS_{21} Small Signal Gain Flatness dB ± 0.5 ± 0.5 ± 1.0 ± 0.75 ± 1.0 Minimum Input Return Loss dB16 RLin(min) 10 16 10 14 Minimum Output Return Loss 10 dB10 13 13 RL_{out(min)} 13 Isolation Minimum Reverse Isolation dB 32 20 32 20 30 P-1dB Output Power at 1 dB Gain Comp. dBm 18 18 12 15 15 Psat Saturated Output Power dBm 20 17 20 14 17Max. Second Harm. $(2 < f_0 < 20)$, $[P_0(f_0) = 17 \text{ dBm or } P_{-1 \text{ dB}},$ dBc -25 -25 -20 -25 -20 H_{2(max)} whichever is less.] Max. Third Harm. $(2 < f_0 < 20)$, H_{3(max)} $[P_0(f_0) = 17 \, dBm \, or P_{-1} dB,$ dBc -34 -34 -20 -34 -20 whichever is less.] NF Noise Figure dB 8 8 10

HMMC-5021/22/26 RF Specifications, $V_{DD} = 7.0 \text{ V}, I_{DD}(Q) = 150 \text{ mA}, Z_{in} = Z_o = 50 \Omega^{[1]}$

Notes:

1. Small-signal data measured in wafer form with $T_{chuck} = 25^{\circ}C$. Large-signal data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ $T_A = 25^{\circ}C$.

2. Performance may be extended to lower frequencies through the use of appropriate off-chip circuitry. Upper -3 dB corner frequency ≈ 29.5 GHz.

Applications

The HMMC-5021/22/26 series of traveling wave amplifiers are designed for use as general purpose wideband gain blocks in communication systems and microwave instrumentation. They are ideally suited for broadband applications requiring a flat gain response and excellent port matches over a 2 to 26.5 GHz frequency range. Dynamic gain control and low-frequency extension capabilities are designed into these devices.

Biasing and Operation

These amplifiers are biased with a single positive drain supply (V_{DD}) and a single negative gate supply (V_{G1}) . The recommended bias conditions for the HMMC-5021/22/26 are $V_{DD} = 7.0V$, $I_{DD} = 150$ mA for best overall performance. To achieve this drain current level, V_{G1} is typically biased between -0.2V and -0.5V. No other bias supplies or connections to the device are required for 2 to 26.5 GHz operation. See Figure 3 for assembly information.

The auxiliary gate and drain contacts are used only for lowfrequency performance extension below ≈ 1.0 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) The second gate (V_{G2}) can be used to obtain 35 dB (typical) dynamic gain control. For normal operation, no external bias is required on this contact and its self-bias voltage is $\approx +2.1$ V. Applying an external bias between its open-circuit voltage and -2.5 volts will adjust the gain while maintaining a good input/output port match.

Assembly Techniques

Solder die-attach using a fluxless AuSu solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 mil diameter Au wire is recommended for all bonds. Tool force should be 22 ± 1 gram, stage temperature should be $150 \pm 2^{\circ}$ C, and ultrasonic power and duration should be 64 ± 1 dB and 76 ± 8 msec, respectively. The bonding pad and chip backside metallization is gold.

For more detailed information see HP application note #999, "GaAs MMIC Assembly and Handling Guidelines."

GaAs MMICs are ESD sensitive. Proper precautions should be used when handling these devices.

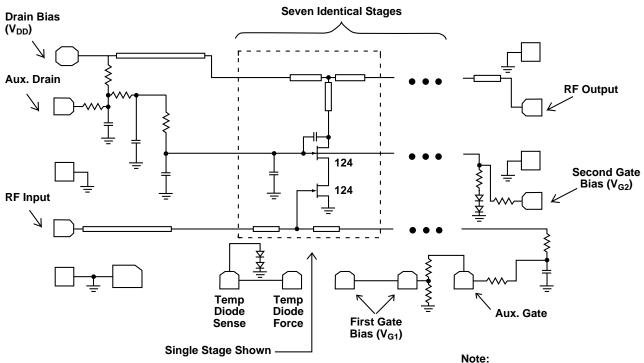


Figure 1. HMMC-5021/22/26 Schematic.

Note: FET gate periphery in microns.

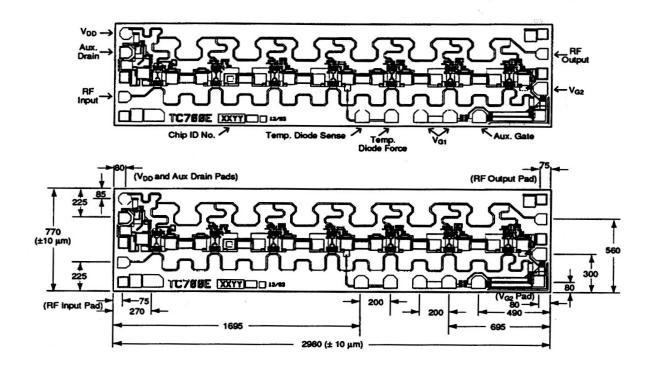
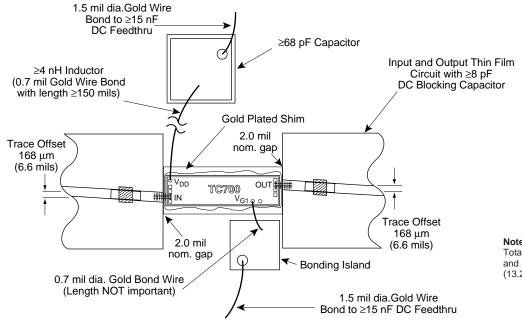
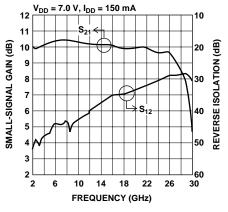
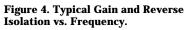



Figure 2. HMMC-5021/22/26 Bonding Pad Locations.

Notes: All dimensions in microns.

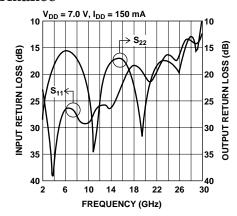

Rectangular Pad Dim: 75 x 75 μ m. Octagonal Pad Dim: 90 μ m dia. All other dimensions $\pm 5 \mu$ m (unless otherwise noted). Chip thickness: 127 \pm 15 μ m.

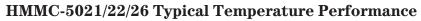


Note: Total offset between RF input and RF output pad is $335 \ \mu m$ (13.2 mils).

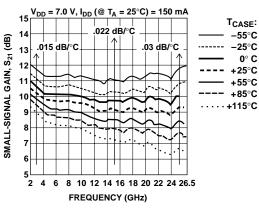
Figure 3. HMMC-5021/22/26 Assembly Diagram.

HMMC-5021/22/26 Typical Performance




Figure 5. Typical Input and Output Return Loss vs. Frequency.

Typical Scattering Parameters ^[1] , ($T_{chuck} = 25^{\circ}C$, $V_{DD} = 7.0$ V, I_{DD}	$= 150 \text{ mA}, Z_{in} = Z_{out} = 50 \Omega$
--	--


Freq.		S ₁₁		,	S ₂₁	,		$\frac{\mathbf{v}, \mathbf{I}_{\text{DD}} - \mathbf{S}_{12}}{\mathbf{S}_{12}}$,		S ₂₂	
GHz	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
2.0	-22.6	0.074	-174.1	-53.1	0.0022	167.3	10.1	3.183	123.6	-28.9	0.036	77.3
3.0	-30.6	0.030	130.4	-51.0	0.0028	120.1	10.0	3.173	102.1	-21.6	0.083	64.1
4.0	-37.8	0.013	-19.8	-48.0	0.0040	95.0	10.2	3.225	78.2	-18.2	0.124	45.4
5.0	-29.4	0.034	-79.9	-46.8	0.0046	67.1	10.3	3.275	53.5	-16.3	0.153	23.4
6.0	-26.6	0.047	-113.8	-44.4	0.0060	36.0	10.4	3.303	28.1	-15.4	0.170	2.5
7.0	-26.6	0.047	-137.0	-44.1	0.0062	1.0	10.4	3.330	2.3	-15.7	0.165	-19.5
8.0	-27.7	0.041	-152.6	-43.4	0.0067	-27.5	10.5	3.331	-23.8	-17.0	0.141	-40.7
9.0	-29.0	0.035	-149.8	-44.3	0.0061	-31.8	10.4	3.312	-50.2	-19.2	0.110	-59.7
10.0	-29.0	0.036	-140.8	-43.0	0.0071	-53.6	10.3	3.282	-76.4	-24.3	0.061	-76.8
11.0	-27.3	0.043	-138.1	-41.6	0.0083	-74.8	10.2	3.253	-102.5	-35.1	0.018	-32.6
12.0	-26.2	0.049	-141.9	-40.0	0.0100	-96.9	10.2	3.227	-128.8	-24.6	0.059	21.0
13.0	-25.8	0.052	-148.5	-38.9	0.0113	-120.9	10.2	3.218	-155.4	-19.7	0.103	2.8
14.0	-26.4	0.048	-143.0	-38.1	0.0125	-145.6	10.1	3.204	177.8	-17.6	0.132	-21.2
15.0	-24.6	0.059	-131.7	-36.6	0.0148	-169.9	10.1	3.197	150.4	-17.0	0.141	-44.8
16.0	-21.6	0.083	-133.7	-35.3	0.0172	160.9	10.0	3.177	122.5	-17.1	0.140	-67.4
17.0	-19.4	0.107	-143.5	-35.0	0.0177	130.6	10.0	3.149	94.4	-18.5	0.119	-91.8
18.0	-18.3	0.121	-158.7	-34.7	0.0184	105.0	9.9	3.138	65.9	-21.8	0.081	-116.0
19.0	-18.7	0.116	-172.6	-33.9	0.0201	80.2	9.9	3.140	36.8	-28.9	0.036	-121.7
20.0	-20.3	0.097	-179.5	-33.3	0.0217	50.7	10.0	3.151	6.6	-28.5	0.038	-57.0
21.0	-21.8	0.082	-168.3	-32.7	0.0233	22.5	10.0	3.150	-24.9	-21.7	0.082	-59.1
22.0	-19.9	0.101	-155.3	-31.7	0.0259	-8.4	9.9	3.126	-57.5	-18.6	0.117	-81.5
23.0	-17.3	0.137	-158.8	-31.4	0.0268	-39.5	9.8	3.076	-91.0	-17.3	0.137	-103.3
24.0	-16.3	0.153	-169.9	-30.7	0.0291	-71.5	9.7	3.045	-125.5	-17.3	0.137	-123.8
25.0	-17.1	0.139	-175.4	-30.0	0.0317	-106.2	9.7	3.045	-162.2	-18.5	0.118	-135.3
26.0	-17.0	0.141	-165.0	-29.2	0.0345	-145.5	9.6	3.027	157.2	-19.4	0.107	-122.5
26.5	-15.7	0.163	-161.1	-29.0	0.0356	-166.7	9.5	2.970	135.4	-17.6	0.132	-114.2
27.0	-14.3	0.192	-162.7	-28.9	0.0357	171.7	9.2	2.876	112.9	-15.3	0.173	-116.0
28.0	-13.2	0.220	-175.7	-28.8	0.0362	126.3	8.5	2.648	65.8	-12.6	0.233	-138.1
29.0	-14.1	0.197	-176.9	-28.6	0.0371	73.0	7.7	2.433	10.3	-15.4	0.170	-144.7
30.0	-11.5	0.266	-171.6	-30.8	0.0287	4.8	4.6	1.689	-61.1	-8.7	0.369	-123.6

Note:

1. Data obtained from on-wafer measurements.

0° C

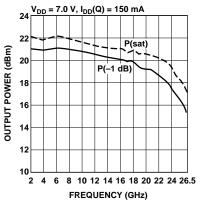
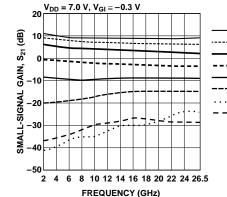



Figure 8. Typical 1 dB Gain **Compression and Saturated Output** Power.

1. All data measured on individual devices mounted in an HP83040 Series Modular Microcircuit Package @ $T_A = 25^{\circ}C$ (except where noted).

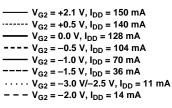


Figure 7. Typical Gain vs. Second Gate **Control Voltage.**

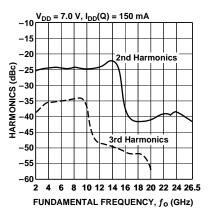


Figure 9. Typical Second and Third Harmonics vs. Fundamental Frequency at P_{OUT} = +17 dBm.

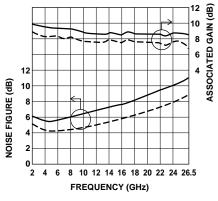
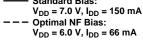



Figure 10. Typical Noise Figure Performance. Standard Bias:

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact your local HP sales representative.