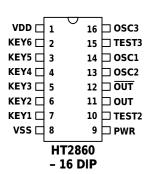
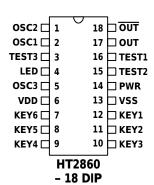


HT2860 6-Sound Generator

Features

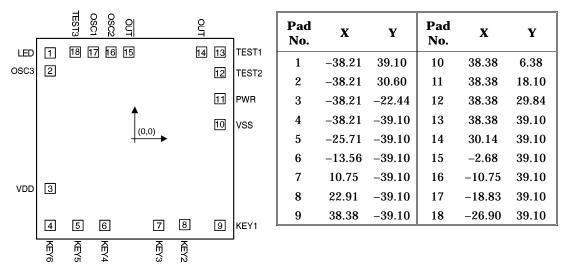
- Single power supply: 2.4V~4.5V
- Low standby current: $1\mu A$ (Typ.) at $V_{DD}=3V$
- Auto power-off function
- Six different sound sections

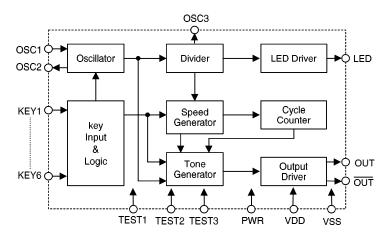

- K1 to K6 independently chosen or as a cascade control
- · Speaker or direct piezo application
- 0.5Hz~1Hz LED flash output
- · Minimal external components


General Description

The HT2860 is a CMOS LSI chip designed for use in sound effect products. It can generate six sections of programmable sounds. The LSI is equipped with tone circuit and control logic to generate various sounds including door bell, alarm, melodies, etc. Users can play not only sound sections (S1~S6) by triggering a single key (K1~K6), but serial sound sections by si-

multaneously triggering more than one key according to the key priority where K1 is the highest and K6 is the lowest. The customer's sound sample is analyzed and programmed into an internal ROM by changing a mask layer during device fabrication. The HT2860 is suitable for various toy applications.


Pin Assignment



Pad Coordinates Unit: mil

Chip size: $89\times 90 \; \text{(mil)}^2$

Block Diagram

 $[\]ast$ The IC substrate should be connected to VDD in the PCB layout artwork.

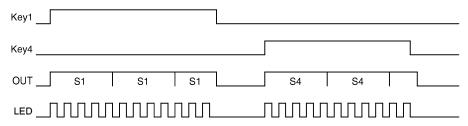
Pad Description

Pad No.	Pad Name	I/O	Internal Connection	Description		
1	LED	О	Inverter Out	LED flash output		
2	OSC3	О	_	Vibration oscillator output		
3	VDD	_	_	Positive power supply		
4	KEY6	I	Pull-Low	KEY6 input, high active		
5	KEY5	I	Pull-Low	KEY5 input, high active		
6	KEY4	I	Pull-Low	KEY4 input, high active		
7	KEY3	I	Pull-Low	KEY3 input, high active		
8	KEY2	I	Pull-Low	KEY2 input, high active		
9	KEY1	I	Pull-Low	KEY1 input, high active		
10	VSS	_	_	Negative power supply, GND		
11	PWR	I	_	Power on reset		
12	TEST2	I/O	_	For IC test only		
13	TEST1	I/O	_	For IC test only		
14	OUT	О	Inverter Out	Sound output, normally low at the standby state		
15	OUT	О	Inverter Out	Sound output, out of phase to pad 14		
16	OSC2	О	_	Oscillator output		
17	OSC1	I	_	Oscillator input		
18	TEST3	I/O	_	For IC test only		

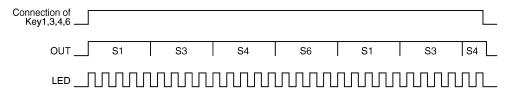
Absolute Maximum Ratings*

Supply Voltage0.3V to 5V	Storage Temperature50°C to 125°C
Input Voltage V_{SS} -0.3 to V_{DD} +0.3 V	Operating Temperature0°C to 70°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damageto the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Electrical Characteristics

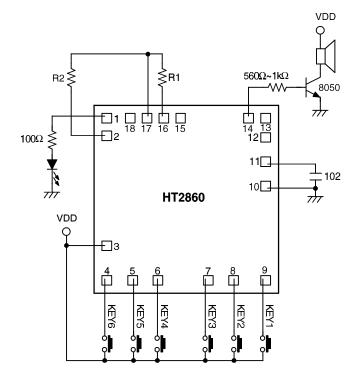
(Ta=25°C)

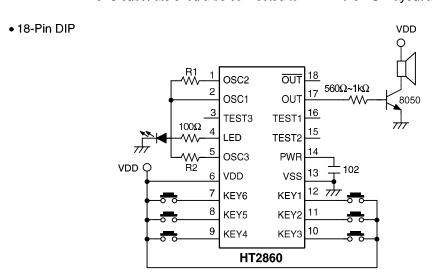

Symbol	Parameter	Test Conditions		Min.	Tem	Max.	Unit
Symbol	rarameter	V _{DD}	Conditions	WIIII.	Тур.	Max.	Oilit
V_{DD}	Operating Voltage	_	_	2.4	3	4.5	V
I _{STB}	Standby Current	3V	_	_	1	5	μΑ
I_{DD}	Operating Current	3V	No load	_	100	200	μΑ
Іон	OUT Source Current	3V	V _{OH} =2.5V	-1	-2	_	mA
I_{OL}	OUT Sink Current	3V	$V_{OL}=0.5V$	1	2	_	mA
I_{LED}	LED Source Current	3V	$V_{OH}=2.5V$	-0.7	-1.5	_	mA
fsys	Oscillator Frequency	3V	R _{OSC} =120kΩ	_	128	_	kHz
V _{IH}	"H" Input Voltage	3V	_	2.4	_	_	V
$V_{\rm IL}$	"L" Input Voltage	3V	_	_	_	0.6	V

Timing Diagram

Key1~Key6 Independent output

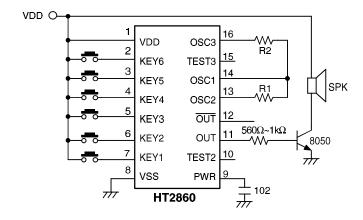
Key1~Key6 Cascade output



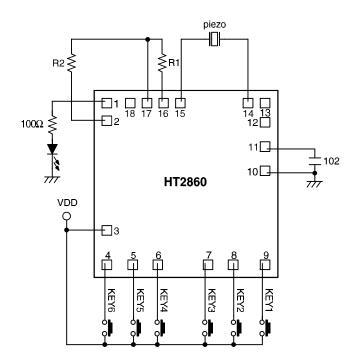

Application Circuits

Speaker application

• Chip form

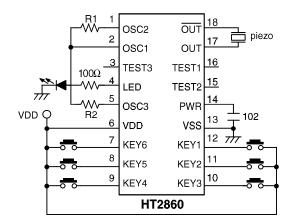


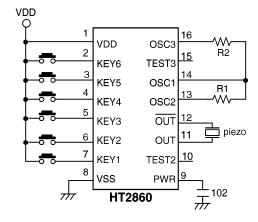
* The IC substrate should be connected to VDD in the PCB layout artwork.



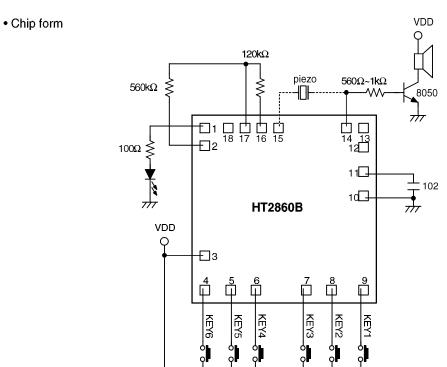
• 16-Pin DIP

Piezo application

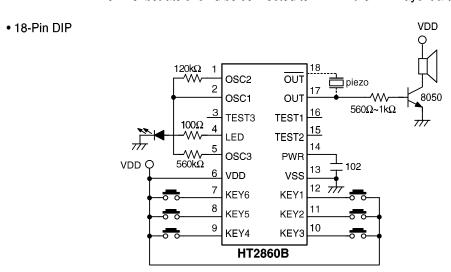

• Chip form


* The IC substrate should be connected to VDD in the PCB layout artwork.

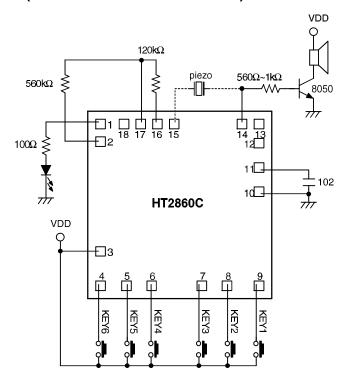
• 18-Pin DIP

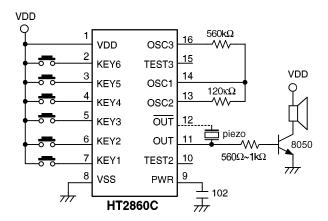


• 16-Pin DIP



Application Circuits (HT2860B — Six Alarm Sounds)


 \ast The IC substrate should be connected to VDD in the PCB layout artwork.


Application Circuits (HT2860C — Six Alarm Sounds)

• Chip form

* The IC substrate should be connected to VDD in the PCB layout artwork.

K1: Alarm Sound (1) K4: Alarm Sound (4)

K2: Alarm Sound (2) K5: Horn K3: Alarm Sound (3) K6: Ambulance

9

11th July '97