HT9302 Series
1-Memory/2-Memory Tone/Pulse Dialer

Features

- Universal specification
- Operating voltage: $2.0 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Low standby current
- Low memory retention current: $0.1 \mu \mathrm{~A}$ (typ.)
- Tone/pulse switchable
- Interface with LCD driver
- 32 digits for redialing
- 32 digits for SA memory dialing
- One-key redialing
- Pause and $\mathrm{P} \rightarrow$ T key for PBX
- 4×4 keyboard matrix
- 3.58 MHz crystal or ceramic resonator

Patent Number: 64097, $86474,64529,113235$ (R.O.C.)

 5424740 (U.S.A.)- Hand-free control
- Hold-line control
- Pause, $P \rightarrow T$ can be saved for redialing
- Lock function
- Resistor options
- M/B ratio
- Flash function and flash time
- Pause and $P \rightarrow T$ duration
- Pulse number
- HT9302A: 18-pin DIP package HT9302B: 22-pin SKDIP package
HT9302C: 20-pin DIP package HT9302D: 24-pin SKDIP package HT9302G: 16-pin DIP/NSOP packages
tion, Hold-line, Hand-free and LCD dialing number display interface, all of which are suitable for feature phone applications. HT9302G is simpler than HT9302X version. It provides only a redialing memory for simple low-cost system applications.

Selection Table

Function Part No.	Lock Function (Pin Selection)	Hold Line	Hand Free	LCD Interface	Package
HT9302x	(Normal version)				
HT9302A	\checkmark	-	-	-	18 DIP
HT9302B	\checkmark	\checkmark	\checkmark	-	22 SKDIP
HT9302C	\checkmark	-	-	\checkmark	20 DIP
HT9302D	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	24 SKDIP
HT9302G	(Simple version)				
HT9302G	-	-	-	-	16 DIP/NSOP

Block Diagram

Pin Assignment

HT9302x normal version

$\overline{\mathrm{C} 1}$	$1 \bigcirc 18$	曰 $\overline{\mathrm{R} 4}$
$\overline{\mathrm{C} 2}$	$2 \quad 17$	صर3
$\overline{\mathrm{C}} \square^{\square}$	16	$\square \overline{\mathrm{R} 2}$
$\overline{\mathrm{C}}$ -	415	$\square \overline{\mathrm{R} 1}$
LOCK-	14	$\square \mathrm{MODE}$
X1■	13	\square DTMF
$\times 2$ -	12	$\square \overline{\mathrm{PO}}$
XMUTE-	$8 \quad 11$	$\square \overline{\mathrm{HKS}}$
vss-	910	$\square \mathrm{VDD}$
	HT9302A 18 DIP-A	

$\overline{\mathrm{C} 1}$	1×20	$\square \overline{\mathrm{R} 4}$
$\overline{\mathrm{C} 2}$	19	$\square \overline{\mathrm{R} 3}$
$\overline{\mathrm{C}}$	18	$\square \overline{\mathrm{R} 2}$
$\overline{\mathrm{C} 4}$	17	$\square \overline{\mathrm{R} 1}$
LOCK	516	MODE
X1	$6 \quad 15$	\square DTMF
X2	14	$\square \overline{\text { PO }}$
XMUTE	13	$\square \overline{\text { HKS }}$
vss	$9 \quad 12$	$\square \mathrm{VDD}$
DOUT	1011	$\square \mathrm{CLOCK}$
	HT9302C 20 DIP-A	

HT9302G simple version

C1	$1{ }^{16}$	$\square \overline{\mathrm{R} 4}$
$\overline{\text { C2 }}$	215	$\square \overline{\mathrm{R} 3}$
$\overline{\mathrm{C} 3}$	$3 \quad 14$	$\square \overline{\mathrm{R} 2}$
$\times 1$.	13	$\square \overline{\mathrm{R} 1}$
$\times 2$	$5 \quad 12$	$\square \mathrm{MODE}$
XMUTE	$6 \quad 11$	- DTMF
vss-	$7 \quad 10$	$\square \overline{\mathrm{PO}}$
VDD-	$8 \quad 9$	$\square \overline{\mathrm{HKS}}$
	HT9302G 6 DIP-A/NSO	

Keyboard Information

HT9302A/B/C/D

HT9302G

Pin Description

Pin Name	1/0	Internal Connection	Description
$\overline{\overline{\mathrm{C} 1}} \sim \overline{\mathrm{C} 4}$	I/O	CMOS IN/OUT	These pins form a 4×4 keyboard matrix which can perform keyboard input detection and dialing specification setting functions. When on-hook ($\overline{\mathrm{HKS}}=$ high) all the pins are set high. While off-hook the column group ($\overline{\mathrm{C} 1} \overline{\mathrm{C} 4})$ remains low and the row group ($\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4})$ is set high for key input detection. An inexpensive single contact 4×4 keyboard can be used as an input device. Pressing a key connects a single column to a single row, and actuates the system oscillator that results in a dialing signal output. If more than two keys are pressed at the same time, no response occurs. The key-in debounce time is 20 ms . Refer to the keyboard information for keyboard arrangement and to the functional description for dialing specification selection.
X1	1		
X2	0	OSCILLATOR	resonator to the X1 and X2 terminals can implement the oscillator function. The oscillator is turned off in the standby mode, and is actuated whenever a keyboard entry is detected.
$\overline{\text { XMUTE }}$	O	NMOS OUT	$\overline{\text { XMUTE }}$ is an NMOS open drain structure pulled to VSS during dialing signal transmission. Otherwise, it is an open circuit. The XMUTE is used to mute the speech circuit when transmitting the dial signal.
$\overline{\text { HKS }}$	I	CMOS IN	This pin is used to monitor the status of the hook-switch and its combination with $\mathrm{HFI} / \overline{\mathrm{HDI}}$ can control the $\overline{\mathrm{PO}}$ pin output to make or break the line. $\overline{\mathrm{HKS}}=\mathrm{VDD}$: On-hook state ($\overline{\mathrm{PO}}=$ low). Except for HFI/HDI (hand-free/hold-line control input), other functions are all disabled. $\overline{H K S}=V S S$: Off-hook state ($\overline{\mathrm{PO}}=$ high $)$. The chip is in the standby mode and ready to receive the key input.
$\overline{\mathrm{PO}}$	O	CMOS OUT	This pin is a CMOS output structure, which by receiving $\overline{\mathrm{HKS}}$ and HFO/HDO signals, control the dialer to connect or disconnect the telephone line. $\overline{\mathrm{PO}}$ outputs a low to break the line when $\overline{\mathrm{HKS}}$ is high (on-hook) and HFO/HDO is low. $\overline{\mathrm{PO}}$ outputs a high to make the line when $\overline{\mathrm{HKS}}$ is low (off-hook) or HFO is high or HDO is high. During the off-hook state, the pin also outputs the dialing pulse train in pulse mode dialing. While in the tone mode, this pin is always high.
MODE	I/O	CMOS IN/OUT	This is a three-state input/output pin, used for dialing mode selection whether Tone mode or Pulse mode; 10pps/20pps. MODE=VDD: Pulse mode, 10pps MODE=OPEN: Pulse mode, 20pps MODE=VSS: Tone mode During pulse mode dialing, switching this pin to the tone mode changes the subsequent digit entry to tone mode. When the chips are in tone mode, switching to the pulse mode will also be recognized.

Pin Name	I/O	Internal Connection	Description
DTMF	0	CMOS OUT	This pin is active only when the chip transmits tone dialing signals. Otherwise, it always outputs a low. The pin outputs tone signals to drive the external transmitter amplifier circuit. The load resistor should not be less than $5 \mathrm{k} \Omega$.
$\overline{\mathrm{HDI}}$	1	CMOS IN Pull-high	This pin is a Schmitt trigger input structure. Active low. Applying a negative going pulse to this pin can toggle the HDO output once. An external RC network is recommended for input debouncing. The Pull-high resistance is $200 \mathrm{k} \Omega$ typ.
HDO	0	CMOS OUT	The HDO is a CMOS output structure. Its output is toggle- controlled by a negative transition on $\overline{\mathrm{HDI}}$. When HDO is toggled high, $\overline{\mathrm{PO}}$ keeps high to hold the line. The hold function can be released by setting HFO high or by an on-off hook operation or by another $\overline{\mathrm{HDI}}$ input. Refer to the functional description for the hold-line function.
HFI	1	CMOS IN Pull-low	This pin is a Schmitt trigger input structure. Active high. Applying a positive going pulse to HFI can toggle the HFO once and hence control the hand-free function. The Pull-low resistance of HFI is $200 \mathrm{k} \Omega$ typ. An external RC network is recommended for input debouncing.
HFO	0	CMOS OUT	The HFO is a CMOS output structure. Its output is toggle- controlled by a positive transition on HFI pin. When HFO is high, the hand-free function is enabled and $\overline{\mathrm{PO}}$ outputs a high to connect the line. The hand-free function can be released by setting HDO high or by an on-off-hook operation or by another HFI input. Refer to the functional description for the hand-free functional operation.
LOCK	I/O	CMOS IN/OUT	This is a three-state input/output pin, used for controlling long distance call function with a lock-switch. LOCK=OPEN: Normal dialing (no lock) LOCK=VDD: " 0,9 " is inhibited for use as the first key input LOCK=VSS: " 0 " is inhibited for use as the first key input
DOUT	0	NMOS OUT	NMOS open drain output pin. It outputs the BCD code of the dialing digits to the LCD driver chip (HT16XX series) or MCU for dialing number display. Refer to the functional description for the detailed timing.
CLOCK	0	NMOS OUT	NMOS open drain output. When dialing, it outputs a series of pulse trains for DOUT data synchronization. DOUT data is valid at the falling edge of clock.
VDD	-	-	Positive power supply, 2.0V $\sim 5.5 \mathrm{~V}$ for normal operation
VSS	-	-	Negative power supply, ground

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage \qquad -0.3 V to 6 V
Storage Temperature \qquad $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage \qquad $\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Operating Temperature \qquad $20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics
$\mathrm{f}_{\mathrm{Osc}}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions			Min.	Typ.	Max.	Unit
		V ${ }_{\text {D }}$		onditions				
$V_{\text {DD }}$	Operating Voltage	-		-	2	-	5.5	V
IDD	Operating Current	2.5 V	Pulse	Off-hook Keypad entry No load	-	0.2	1	mA
			Tone		-	0.6	2	mA
Іstb	Standby Current	1V	On-hook, no load No entry		-	-	1	$\mu \mathrm{A}$
V_{R}	Memory Retention Voltage	-		-	1	-	5.5	V
I_{R}	Memory Retention Current	1V	On-hook		-	0.1	0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-	-		V_{SS}	-	$0.2 V_{\text {DD }}$	V
V_{IH}	Input High Voltage	-	-		$0.8 V_{\text {DD }}$	-	$V_{D D}$	V
Іхмо	$\overline{\text { XMUTE Leakage Current }}$	-	$V_{\overline{\mathrm{XMUTE}}}=12 \mathrm{~V}$ No entry		-	-	1	$\mu \mathrm{A}$
Iolxm	$\overline{\text { XMUTE S Sink Current }}$	2.5 V	$V_{\overline{\text { XMUTE }}}=0.5 \mathrm{~V}$		1	-	-	mA
IHKS	$\overline{\text { HKS Pin Input Current }}$	2.5 V	$\mathrm{V} \overline{\mathrm{HKS}}=2.5 \mathrm{~V}$		-	-	0.1	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{HFI}}$	HFI Pull-low Resistance	2.5 V	$\mathrm{V}_{\mathrm{HFI}}=2.5 \mathrm{~V}$		-	200	-	$\mathrm{k} \Omega$
$\mathrm{R} \overline{\mathrm{HDI}}$	$\overline{\mathrm{HDI}}$ Pull-high Resistance	2.5 V	$V_{\overline{H D I}}=0 \mathrm{~V}$		-	200	-	k Ω
lOH_{1}	Keypad Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=0 \mathrm{~V}$		-4	-	40	$\mu \mathrm{A}$
IoL1	Keypad Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=2.5 \mathrm{~V}$		200	400	-	$\mu \mathrm{A}$
IOH 2	HFO Pin Source Current	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$		-1	-	-	mA
Iol2	HFO Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		1	-	-	mA
ІОН3	HDO Pin Source Current	2.5 V	$\mathrm{V}_{\text {OH }}=2 \mathrm{~V}$		-1	-	-	mA
Iol3	HDO Pin Sink Current	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$		1	-	-	mA
$t_{\text {FP }}$	Pause Time After Flash	-	Control key		-	0.2	-	S
			Digit key		-	1	-	
t_{RP}	One-key Redialing Pause Time	-	One-key redialing		-	1	-	s
$t_{\text {DB }}$	Key-in Debounce Time	-		-	-	20	-	ms
$\mathrm{t}_{\text {BRK }}$	Break Time for One-key Redialing	-	One-k	redialing	-	1.2	-	S
fosc	System Frequency	-	Crysta	$=3.5795 \mathrm{MHz}$	3.5759	3.5795	3.5831	MHz

Pulse Mode Electrical Characteristics
$\mathrm{fosc}^{2}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
ІРон	$\overline{\text { PO Output Source Current }}$	2.5 V	$\mathrm{V}_{\mathrm{OH}}=2 \mathrm{~V}$	-0.2	-	-	mA
IpoL	$\overline{\text { PO Output Sink Current }}$	2.5 V	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	0.2	0.6	-	mA
PR	Pulse Rate	-	MODE pin is connected to $V_{\text {DD }}$	-	10	-	pps
			MODE pin is opened	-	20	-	
M/B	Make/Break Ratio	-	A resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$	-	33:66	-	\%
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$	-	40:60	-	
tpdp	Pre-digit-pause Time	-	M/B ratio=40:60	-	$\begin{aligned} & 40 \text { (10pps) } \\ & 20 \text { (20pps) } \end{aligned}$	-	ms
			M/B ratio=33:66	-	$\begin{aligned} & 33 \text { (10pps) } \\ & 17 \text { (20pps) } \end{aligned}$	-	
$\mathrm{t}_{\mathrm{IDP}}$	Inter-digit-pause Time	-	Pulse rate=10pps	-	800	-	ms
			Pulse rate=20pps	-	500	-	
${ }^{\text {m }}$	Pulse Make Duration	-	A resistor is linked between R2 and $\overline{\mathrm{C}} 1$	-	$\begin{aligned} & 33 \text { (10pps) } \\ & 17 \text { (20pps) } \\ & \hline \end{aligned}$	-	ms
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C} 1}$	-	$\begin{aligned} & 40 \text { (10pps) } \\ & 20 \text { (20pps) } \end{aligned}$	-	
t_{B}	Pulse Break Duration	-	A resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C}} 1$	-	$\begin{aligned} & \hline 66 \text { (10pps) } \\ & 33 \text { (20pps) } \\ & \hline \end{aligned}$	-	ms
			No resistor is linked between $\overline{\mathrm{R} 2}$ and $\overline{\mathrm{C}} 1$	-	$\begin{aligned} & 60 \text { (10pps) } \\ & 30 \text { (20pps) } \end{aligned}$	-	

Tone Mode Electrical Characteristics
$\mathrm{fosc}^{2}=3.5795 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions			Min.	Typ.	Max.	Unit
		V DD	Conditions					
$V_{\text {TDC }}$	DTMF Output DC Level	-	-		$0.45 \mathrm{~V}_{\mathrm{DD}}$	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{I}_{\text {tol }}$	DTMF Sink Current	2.5 V	$\mathrm{V}_{\text {DTMF }}=0.5 \mathrm{~V}$		0.1	-	-	mA
$\mathrm{V}_{\text {TAC }}$	DTMF Output AC Level	-	Row group, $\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		0.12	0.155	0.18	Vrms
R_{L}	DTMF Output Load	2.5 V	THD $\leq-23 \mathrm{~dB}$		5	-	-	$\mathrm{k} \Omega$
$A_{C R}$	Column Pre-emphasis	2.5 V	Row group=0dB		1	2	3	dB
THD	Tone Signal Distortion	2.5 V	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-	-30	-23	dB
$t_{\text {tmin }}$	Minimum Tone Duration	-	Auto-redial	Others	-	82.5	-	ms
				9302G	-	100	-	
$\mathrm{t}_{\text {ITPM }}$	Minimum Inter-tone Pause	-	Auto-redial	Others	-	85.5	-	ms
				9302G	-	106	-	

THD (Distortion) $(\mathrm{dB})=20 \log \left(\sqrt{\mathrm{~V}^{2}+\mathrm{V}^{2}+\ldots \mathrm{Vn}^{2}} / \sqrt{\mathrm{Vi}^{2}+\mathrm{Vh}^{2}}\right)$
Vi, Vh: Row group and column group signals
V1, V2, ... Vn: Harmonic signals (BW=300Hz~3500Hz)

Functional Description

Keyboard matrix

$\overline{\mathrm{C} 1} \sim \overline{\mathrm{C} 4}$ and $\overline{\mathrm{R} 1} \sim \overline{\mathrm{R} 4}$ form a keyboard matrix. Together with a standard 4×4 keyboard, the keyboard matrix is used for dialing entries. In addition, the keyboard matrix provides resistor option for different dialing specification selections. The keyboard arrangement for each of the HT9302 series are shown in the Keyboard Information.

Tone frequency

Tone Name	Output Frequency (Hz)		$\%$ Error
	Specified	Actual	
$\overline{\mathrm{R} 1}$	697	699	$+0.29 \%$
$\overline{\mathrm{R} 2}$	770	766	-0.52%
$\overline{\mathrm{R} 3}$	852	847	-0.59%
$\overline{\mathrm{R} 4}$	941	948	$+0.74 \%$
$\overline{\mathrm{C} 1}$	1209	1215	$+0.50 \%$
$\overline{\mathrm{C} 2}$	1336	1332	-0.30%
$\overline{\mathrm{C} 3}$	1477	1472	-0.34%

Note: \% Error does not contain the crystal frequency drift

Dialing specification selection

By means of adding resistors on the keyboard matrix pins, various dialing specifications can be selected. The allowable option resistor connections are shown.

All the resistors are $330 \mathrm{k} \Omega$. The resistor option functions and the default specifications (without option resistors) are listed below.

Option Resistor	Option Function	Default (No Resistor)
$R_{\mathrm{K} 12}$	Make/Break Ratio Selection	$40: 60$
$R_{\mathrm{K} 13}$	Flash Function and	
Flash Time Selection	Flash=control function	
$R_{\mathrm{K} 14}$	Flime $=600 \mathrm{~ms}$	
$R_{\mathrm{K} 21}$	Pause \& $\mathrm{P} \rightarrow \mathrm{T}$ Duration Selection	$\mathrm{t}_{\mathrm{P}}=3.6 \mathrm{~s}$ $\mathrm{t}_{\mathrm{P} \rightarrow \mathrm{T}}=3.6 \mathrm{~s}$
$\mathrm{R}_{\mathrm{K} 31}$	Pulse Number	N
$\mathrm{R}_{\mathrm{K} 41}$	Selection	

M/B ratio selection table

$\mathbf{R}_{\text {K12 }}$	M/B Ratio (\%)
No	$40: 60$
Yes	$33.3: 66.6$

Flash function/time (duration) selection table

$\mathbf{R}_{\mathbf{K 1 3}}$	$\mathbf{R}_{\mathbf{K 1 4}}$	Flash Function	Flash Time ($\mathbf{t}_{\mathbf{F}}$)
No	No	Control	600 ms
No	Yes	Digit	600 ms
Yes	No	Digit	98 ms
Yes	Yes	Digit	300 ms

Pause and $\mathbf{P} \rightarrow \mathbf{T}$ duration selection table

$\mathbf{R}_{\mathbf{K 2 1}}$	$\left.\mathbf{t}_{\mathbf{P}} \mathbf{(s e c}\right)$	$\left.\mathbf{t}_{\mathbf{P} \rightarrow \mathbf{T}} \mathbf{(s e c}\right)$
No	3.6	3.6
Yes	2	1

Pulse number selection table

- This table shows pulse number selections for HT9302x.

$\mathbf{R}_{\text {K31 }}$	$\mathbf{R}_{\text {K41 }}$	Pulse Number
No	No	N
No	Yes	$\mathrm{N}+1$
Yes	No	$10-\mathrm{N}$
Yes	Yes	-

- HT9302G has different selection method listed in the table below.

R $_{\text {K31 }}$	Pulse Number
No	N
Yes	$10-\mathrm{N}$

Pulse number table

Keypad	Output Pulse Number		
Digit Key	Normal N	New Zealand $(\mathbf{1 0 - N})$	Sweden/ Denmark $(\mathbf{N + 1)}$
1	1	9	2
2	2	8	3
3	3	7	4
4	4	6	5
5	5	5	6
6	6	4	7
7	7	3	8
8	8	2	9
9	9	1	10
0	10	10	1
$* / T$	$\mathrm{P} \rightarrow \mathrm{T}$	$\mathrm{P} \rightarrow \mathrm{T}$	$\mathrm{P} \rightarrow \mathrm{T}$
$\#$	Ignored	Ignored	Ignored

Hand-free function operation

- Hand-free function execution When HFO is low, a rising edge triggers the HFI, enabling the Hand-free function (HFO becomes high).
- Reset Hand-free function

When HFO is high, the Hand-free function is enabled and can be reset by:

- Off-hook
- Applying a rising edge to HFI
- Changing the HDO pin from low to high
- Hand-free function table

Current State			Input			Next State	
HKS	HFO	HDO	HDI	HFI	HKS	HFO	HDO
H	L	X	H	L	An	L	An
H	L	X	H	」	An	H	L
H	H	X	H	\pm	An	L	An
H	X	L	H	L	L	L	L
L	L	X	H	L	An	L	An
L	L	X	H		An	H	L
L	H	L	H	-	An	L	An
L	X	X	H	L	H	An	An
X	X	L	∇	L	An	L	H

> H: Logic HIGH X: Don't care

L: Logic LOW An: Unchanged
$\overline{\text { A }}$: Rising edge
₹ : Falling edge

Hold-line function operation

- Hold-line function execution

When HDO is low, a falling edge triggers the $\overline{\mathrm{HDI}}$, enabling the Hold-line function (HDO becomes high). The XMUTE remains low when HDO is high.

- Reset Hold-line function

When HDO is high, the Hold-line function is enabled and can be reset by:

- Off-hook
- Applying a falling edge to $\overline{\mathrm{HDI}}$
- Changing the HFO pin from low to high
- Hold-line function table

Current State			Input				Next State	
HKS	HDO	HFO	HFI	HDI	HKS	HDO	HFO	
H	L	X	L	H	An	L	An	
H	L	X	L	Z	An	H	L	
H	H	L	L	■	An	L	An	
H	X	X	L	H	L	L	L	
L	L	X	L	H	An	L	An	
L	L	X	L	■	An	H	L	
L	H	L	L	I	An	L	An	
L	X	X	L	H	H	An	An	
X	X	L	I	H	An	L	H	

$$
\begin{array}{lcc}
\text { H: Logic HIGH } & \text { X: Don't care } & \bar{\Delta}: \text { Rising edge } \\
\text { L: Logic LOW } & \text { An: Unchanged } & \bar{\nabla}: \text { Falling edge }
\end{array}
$$

DOUT BCD code

When dialing, the corresponding 4-bit BCD codes are serially presented on DOUT from MSB to LSB. The data of DOUT is valid at the falling edge of the CLOCK pin. The following table lists the BCD codes corresponding to the keyboard input.

Key-In	BCD Code	Key-In	BCD Code
1	0001	8	1000
2	0010	9	1001
3	0011	0	1010
4	0100	$* / T$	1101
5	0101	$\#$	1100
6	0110	F	1011
7	0111	P	1110

LOCK function

The function aims to detect locked dialing number to prevent a long distance call. The dialing output of the chip is disabled if the first input key after on-off-hook is the locked number when the lock function is enabled. The lock function selection is listed below.

- HT9302x version

LOCK Pin	Function
OPEN	Normal dialing (no lock)
VDD	$" 0,9$ " is inhibited
VSS	$" 0$ " is inhibited

Key definition

- 0,1,2,3,4,5,6,7,8,9 keys

These are dialing number input keys for both the pulse mode and the tone mode operations.

- */T

This key executes the $P \rightarrow T$ function and waits a $t_{P \rightarrow T}$ duration in the pulse mode. On the other hand, the $* / T$ key executes the $*$ function in the tone mode.

- \#

This is a dialing signal key for the tone mode only, no response in the pulse mode.

- SA

Pressing this key can save the preceding dialing telephone numbers. The saved number is redialed if it is pressed again. SA will also redial the saved number if it is the first key pressed at the off-hook state. During the dialing signal transmission, the SA key is inhibited.

- F

The flash key can be selected as a digit or a control key by the option resistors $R_{\mathrm{K} 13} \& R_{\mathrm{K} 14}$. Pressing the flash key will force the $\overline{\mathrm{PO}}$ pin to be "low" for the t_{F} duration and is then followed by t_{FP} (sec). t_{F} can also be selected by $R_{\mathrm{K} 13}, \mathrm{R}_{\mathrm{K} 14}$.

- P

Pause key. The execution of the pause key pauses the output for the t_{p} duration. t_{p} can be selected by $\mathrm{R}_{\mathrm{K} 21}$.

- R

Redial key. Executes redialing as well as one-key redial function.

- ST

This key can store lock number with personal code in IDD lock operation.

- R/P

Redial and pause function key. If it is pressed as the first key after off-hook, this key executes the redial function. Otherwise, it works as the pause key.

Keyboard operation

The following operations are described under an on-off- hook or on-hook condition with the hand-free active condition.

- Normal dialing
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{* / T}$ Dn+1 ...
Dm
Dialing output: $\underbrace{\mathrm{D} 1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{tp} \rightarrow \mathrm{T} \underbrace{\mathrm{Dn}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm
SAM: Unchanged

- Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn ${ }^{* / T}$ Dn+1 ...
Dm
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: Unchanged

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits are entered, the signal is transmitted but the redial function is inhibited.

- Redial
- Pulse mode
(a) without */T

RM content: D1 D2 ... Dn
Keyboard input: [R or R / P]
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: [R or R/P]
Dialing output: $\underbrace{\text { D1 D2 } \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{tP} \rightarrow \mathrm{T}_{\mathrm{T}}^{\mathrm{D} \underbrace{n+1 \ldots \mathrm{Dm}}_{\text {Tone }}}$
RM: Unchanged
SAM: Unchanged

- Tone mode
(a) without */T

RM content: D1 D2 ... Dn
Keyboard input: [R or R / P]
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

RM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: [R or R / P]
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: Unchanged
SAM: Unchanged

- One-key redial
- Pulse mode
(a) without $* / T$

Keyboard input: D1 D2 ... Dn R
Dialing output: D1 D2 ... Dn tBRK trp D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...
Dm R
Dialing output: $\underbrace{\text { D1 D2 }}_{\text {Pulse }} \mathrm{Dn} \mathrm{tp} \rightarrow \mathrm{T} \underbrace{\mathrm{Dn}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
tBRK trp $\underbrace{11 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Pulse }} \mathrm{tp} \rightarrow \mathrm{T}$
$\underbrace{\mathrm{Dn}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: D1 D2 ... Dn */T Dn+1 ... Dm
SAM: Unchanged

- Tone mode
(a) without $* / T$

Keyboard input: D1 D2 ... Dn R
Dialing output: D1 D2 ... Dn tbrk trp D1 D2
RM: D1 D2 ... Dn
SAM: Unchanged
(b) with $* / T$

Keyboard input: D1 D2 ... Dn */T Dn+1 ...

Dm R

Dialing output: D1 D2 ... Dn * Dn+1 ... Dm tBRK trp D1 D2 ... Dn * Dn+1
... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: Unchanged

Note: If the dialing number exceeds 32 digits, redialing is inhibited and $\overline{\mathrm{PO}}=\mathrm{V} D \mathrm{D}$

- SA copy
- Pulse mode
(a) without */T

Keyboard input: D1 D2 ... Dn SA
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn $\pi^{* / T}$ Dn+1 ...
Dm SA
Dialing output: $\underbrace{1 \mathrm{D} 2 \ldots \mathrm{Dn}}_{\text {Duse }} \mathrm{tp} \rightarrow \mathrm{T} \underbrace{}_{\text {Dn+1 } 1 . \mathrm{Dm}}$
RM: D1 D2 ... Dn */T Dn+1... Dm

- Tone mode
(a) without */T

Keyboard input: D1 D2 ... Dn SA
Dialing output: D1 D2 ... Dn
RM: D1 D2 ... Dn
SAM: D1 D2 ... Dn
(b) with */T

Keyboard input: D1 D2 ... Dn */T Dn+1 ...
Dm SA
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: D1 D2 ... Dn * Dn+1 ... Dm
SAM: D1 D2 ... Dn * Dn+1 ... Dm

Note: The maximum capacity of the RM memory is 32 digits. When more than 32 digits plus the "SA" key are entered, the SAVE function will not be executed, and all the existing data in the save memory will not be changed.

- SA dialing
- Pulse mode
(a) without */T

SAM content: D1 D2 ... Dn
Keyboard input: SA
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

SAM content: D1 D2 ... Dn */T Dn+1 ... Dm
Keyboard input: SA
Dialing output: $\underbrace{\text { D1 D2 } n}_{\text {Pulse }} \mathrm{DP} \rightarrow \mathrm{T} \underbrace{\mathrm{Dn}+1 \ldots \mathrm{Dm}}_{\text {Tone }}$
RM: Unchanged
SAM: Unchanged

- Tone mode
(a) without */T

SAM content: D1 D2 ... Dn
Keyboard input: SA
Dialing output: D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged
(b) with */T

SAM content: D1 D2 ... Dn * Dn+1 ... Dm
Keyboard input: SA
Dialing output: D1 D2 ... Dn * Dn+1 ... Dm
RM: Unchanged
SAM: Unchanged

- Flash
- Flash as a digital key
(a) The intervenient key

Keyboard input: | D 1 D 2 | |
| ---: | :--- |
| Dm | $\mathrm{Dn} \sqrt{\mathrm{Dm}} \mathrm{Dn+1} \ldots$ |

Dialing output: D1 D2 ... Dn tF tFP Dn+1 ... Dm
RM: D1 D2 ... Dn
SAM: Unchanged
(b) The first key

- Flash as a control key

Keyboard input: D1 D2 ... Dn F Dn+1 ... Dm
Dialing output: D1 D2 ... Dn TF TFp Dn+1 ...
Dm
RM: Dn+1 ... Dm
SAM: Unchanged

Keyboard input: F D1 D2 ... Dn
Dialing output: tf tFP D1 D2 ... Dn
RM: Unchanged
SAM: Unchanged

- Pause

Keyboard input: D1 D2 ... Dn P Dn+1 ... Dm
Dialing output: D1 D2 ... Dn tp Dn+1 ... Dm
RM: D1 D2 ... Dn P Dn+1 ... Dm
SAM: Unchanged

- Note

RM: Redial memory
SAM: Save dialing memory
D1 D2 ... Dn: 0~9
Dn+1 ... Dm: 0~9, *, \#

Timing Diagrams
Normal dialing

- Pulse mode

- Tone mode

Dialing with pause key

- Pulse mode

- Tone mode

Flash key operation

Pulse \rightarrow Tone operation

One key redial operation

CLOCK \& DOUT operation

Note: D1=D3=3
D2=2

Application Circuits

Application circuit 1

Application circuit 3

Application circuit 5

Package Information

16-pin DIP (300 mil) Outline Dimensions

Fig1. Full Lead Packages

Fig2. 1/2 Lead Packages

- MS-001d (see fig1)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	780	-	880
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I	-		430

- MS-001d (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	735	-	775
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I	-	430	

- MO-095a (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	745	-	785
B	275	-	295
C	120	-	150
D	110	-	150
E	14	-	22
F	45	-	60
G	-	100	-
H	300	-	325
I	-	-	430

16-pin NSOP (150mil) Outline Dimensions

- MS-012

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	228	-	244
B	150	-	157
C	12	-	20
C' $^{\prime}$	386	-	394
D	-	-	69
E	-	50	-
F	4	-	10
G	16	-	50
α	7	-	10

18-pin DIP (300 mil) Outline Dimensions

Fig1. Full Lead Packages

Fig2. 1/2 Lead Packages

- MS-001d (see fig1)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	880	-	920
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I		-	430

- MS-001d (see fig1)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	845	-	880
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I	-		430

- MO-095a (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	845	-	885
B	275	-	295
C	120	-	150
D	110	-	150
E	14	-	22
F	45	-	60
G	-	100	-
H	300	-	325
I	-	-	430

20-pin DIP (300mil) Outline Dimensions

Fig1. Full Lead Packages

- MS-001d (see fig1)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	980	-	1060
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I		-	430

- MO-095a (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	945	-	985
B	275	-	295
C	120	-	150
D	110	-	150
E	14	-	22
F	45	-	60
G	-	100	-
I	-	-	325

22-pin SKDIP (300mil) Outline Dimensions

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1085	-	1105
B	253	-	263
C	125	-	135
D	125	-	145
E	16	-	20
F	50	-	70
G	-	100	-
I	295	-	315

24-pin SKDIP (300mil) Outline Dimensions

Fig1. Full Lead Packages

Fig2. 1/2 Lead Packages

- MS-001d (see fig1)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1230	-	1280
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325
I	-	430	

- MS-001d (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1160	-	1195
B	240	-	280
C	115	-	195
D	115	-	150
E	14	-	22
F	45	-	70
G	-	100	-
H	-	-	325

- MO-095a (see fig2)

Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1145	-	1185
B	275	-	295
C	120	-	150
D	110	-	150
E	14	-	22
F	45	-	60
G	-	100	-
H	300	-	325
I	-	-	430

Product Tape and Reel Specifications
Reel Dimensions

SOP 16N (150mil)

Symbol	Description	Dimensions in mm
A	Reel Outer Diameter	330.0 ± 1.0
B	Reel Inner Diameter	100.0 ± 1.5
C	Spindle Hole Diameter	$13.0^{+0.5 /-0.2}$
D	Key Slit Width	2.0 ± 0.5
T1	Space Between Flange	$16.8^{+0.3 /-0.2}$
T2	Reel Thickness	22.2 ± 0.2

Carrier Tape Dimensions

SOP 16N (150mil)

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0 ± 0.3
P	Cavity Pitch	8.0 ± 0.1
E	Perforation Position	1.75 ± 0.1
F	Cavity to Perforation (Width Direction)	7.5 ± 0.1
D	Perforation Diameter	$1.55^{+0.10 /-0.00}$
D1	Cavity Hole Diameter	$1.50^{+0.25 /-0.00}$
P0	Perforation Pitch	4.0 ± 0.1
P1	Cavity to Perforation (Length Direction)	2.0 ± 0.1
A0	Cavity Length	6.5 ± 0.1
B0	Cavity Width	10.3 ± 0.1
K0	Cavity Depth	2.1 ± 0.1
t	Carrier Tape Thickness	0.30 ± 0.05
C	Cover Tape Width	13.3 ± 0.1

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)
G Room, 3 Floor, No. 1 Building, No. 2016 Yi-Shan Road, Minhang District, Shanghai, China 201103
Tel: 86-21-5422-4590
Fax: 86-21-5422-4705
http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, Gaoxin M 2nd, Middle Zone Of High-Tech Industrial Park, ShenZhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722

Holtek Semiconductor Inc. (Beijing Sales Office)
Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031
Tel: 86-10-6641-0030, 86-10-6641-7751, 86-10-6641-7752
Fax: 86-10-6641-0125

Holtek Semiconductor (USA), Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538, USA
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com

Copyright © 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

