12-Channel High Voltage Analog Switch

Ordering Information

$V_{P P}-V_{N N}$	Package Options	
	48-pin TQFP	Die
200 V	HV209FG	HV209X

Features

- HVCMOS technology for high performance
- Operating voltage of up to 200 V
- Output On-resistance typically 22Ω
- Integrated bleed resistors on the outputs
\square Very low quiescent power dissipation $-10 \mu \mathrm{~A}$
- Low parasitic capacitances
- -58 dB typical output off isolation at 5 MHz
- 5.0 V to 12 V CMOS logic circuitry
- Excellent noise immunity
- Flexible high voltage supplies

General Description

The Supertex HV209 is a 200V low charge injection 12channel high voltage analog switch configured as 6 SPDT analog switch intended for medical ultrasound applications. Bleed resistors are integrated on the output switches to eliminate charge built up on the piezo electric transducers. The bleed resistors are at a nominal value of $35 \mathrm{~K} \Omega$. Using HVCMOS technology, this device combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals. The outputs are configured as single pole double throw analog switches. Data is shifted into a 6-bit shift register using an external clock. The $\overline{\mathrm{LE}}$ latches the shift register data into the individual switch latches. A logic high connects a switch common Y_{X} to SW_{X}. A logic low connects Y_{X} to SW_{X}. A logic hi in CL resets all switches to $\overline{\mathrm{SW}_{\mathrm{X}}}$ simultaneously.

Absolute Maximum Ratings*

V_{DD} Logic power supply voltage	-0.5 V to +15 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\text {NN }}$ Supply voltage	+220 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive high voltage supply	-0.5 V to +200 V
$\mathrm{~V}_{\text {NN }}$ Negative high voltage supply	+0.5 V to -200 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\text {SIG }}$ Analog Signal Range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	1.0 W

* All voltages are referenced to ground. Absolute maximum ratings are those values which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

Electrical Characteristics

DC Characteristics (over recommended operating conditions unless otherwise noted)

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Test Conditions	
		min	max	min	typ	max	min	max			
Small Signal Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		30		26	38		48	ohms	$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{PP}}=40 \mathrm{~V}$,
			25		22	27		32		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	$V_{N N}=-160 \mathrm{~V}$
			25		22	27		30		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$V_{\text {PP }}=100 \mathrm{~V}$,
			18		18	24		27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{NN}}=-100 \mathrm{~V}$
			23		20	25		30		$\mathrm{I}_{\text {SIG }}=5 \mathrm{~mA}$	$V_{P P}=190 \mathrm{~V}$,
			22		16	25		27		$\mathrm{I}_{\text {SIG }}=200 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{NN}}=-10 \mathrm{~V}$
Small Signal Switch (ON) Resistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$		20		5.0	20		20	\%	$\begin{aligned} & I_{\mathrm{SW}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \end{aligned}$	
Large Signal Switch (ON) Resistance	$\mathrm{R}_{\text {ONL }}$				15				ohms	$\mathrm{V}_{\text {SIG }}=\mathrm{V}_{\text {PP }}-10 \mathrm{~V}, \mathrm{I}_{\text {SIG }}=1 \mathrm{~A}$	
Output Switch Shunt Resistance	$\mathrm{R}_{\text {INT }}$			20	35	50			Kohms	Output switch to $\mathrm{R}_{\text {GND }}$	
DC Offset Switch Off			50			50		50	mV	No Load, $\mathrm{R}_{\text {GND }}=0 \mathrm{~V}$	
DC Offset Switch On			50			50		50	mV	No Load, $\mathrm{R}_{\mathrm{GND}}=0 \mathrm{~V}$	
Pos. HV Supply Current	$\mathrm{I}_{\text {PPQ }}$				10	50			$\mu \mathrm{A}$	ALL SWs OFF	
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-10	-50			$\mu \mathrm{A}$	ALL SWs OFF	
Pos. HV Supply Current	$\mathrm{I}_{\mathrm{PPQ}}$				10	50			$\mu \mathrm{A}$	ALL SWs ON $\mathrm{ISW}^{\text {a }}$ = mA	
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-10	-50			$\mu \mathrm{A}$	ALL SWs ON $\mathrm{ISW}^{\text {}}=5 \mathrm{~mA}$	
Switch Output Peak Current			3.0		3.0	2.0		2.0	A	$\mathrm{V}_{\text {SIG }}$ duty cycle $\leq 0.1 \%$	
Output Switch Frequency	$\mathrm{f}_{\text {Sw }}$					50			KHz	Duty Cycle = 50\%	
Ipp Supply Current	$\mathrm{I}_{\text {PP }}$		6.5			7.0		8.0	mA	$\begin{aligned} & V_{P P}=40 \mathrm{~V}, \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	50 KHz Output Switching Frequency with no load
			4.0			5.0		5.5		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=100 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-100 \mathrm{~V} \\ & \hline \end{aligned}$	
			4.0			5.0		5.5		$\begin{aligned} & V_{\mathrm{PP}}=190 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-10 \mathrm{~V} \end{aligned}$	
$I_{\text {NN }}$ Supply Current	$\mathrm{I}_{\text {NN }}$		6.5			7.0		8.0	mA	$\begin{aligned} & V_{P P}=40 \mathrm{~V}, \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$	
			4.0			5.0		5.5		$\begin{aligned} & V_{P P}=100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$	
			4.0			5.0		5.5		$\begin{aligned} & V_{P P}=190 \mathrm{~V}, \\ & V_{N N}=-10 \mathrm{~V} \end{aligned}$	
Logic Supply Average Current	I_{DD}		4.0			4.0		4.0	mA	$\mathrm{f}_{\mathrm{CLK}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	
Logic Supply Quiescent Current	$\mathrm{I}_{\mathrm{DDQ}}$		10			10		10	$\mu \mathrm{A}$		
Data Out Source Current	$\mathrm{I}_{\text {SOR }}$	0.45		0.45	0.70		0.40		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$	
Data Out Sink Current	$\mathrm{I}_{\text {SINK }}$	0.45		0.45	0.70		0.40		mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$	
Logic Input Capacitance	$\mathrm{C}_{\text {IN }}$		10			10		10	pF		

Electrical Characteristics

AC Characteristics (over operating conditions $V_{D D}=5 \mathrm{~V}$, unless otherwise noted)

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Test Conditions
		min	max	min	typ	max	min	max		
Set Up Time Before $\overline{\text { LE Rises }}$	$\mathrm{t}_{\text {SD }}$	150		150			150		ns	
Time Width of $\overline{\text { LE }}$	$\mathrm{t}_{\text {WLE }}$	150		150			150		ns	
Clock Delay Time to Data Out	t_{DO}		150			150		150	ns	
Time Width of CL	$\mathrm{t}_{\mathrm{WCL}}$	150		150			150		ns	
Set Up Time Data to Clock	t_{su}	15		15	8.0		20		ns	
Hold Time Data from Clock	$t_{\text {h }}$	35		35			35		ns	
Clock Freq	$\mathrm{f}_{\text {cLK }}$		5.0			5.0		5.0	MHz	50\% duty cycle $f_{\text {DATA }}=f_{\text {CLK }} / 2$
Turn On Time	t_{ON}		5.0			5.0		5.0	$\mu \mathrm{s}$	$\begin{aligned} & V_{S I G}=V_{P P}-10 \mathrm{~V} \\ & R_{L}=10 \mathrm{~K} \Omega \end{aligned}$
Turn Off Time	$\mathrm{t}_{\text {OFF }}$		5.0			5.0		5.0	$\mu \mathrm{s}$	$\begin{aligned} & V_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega \end{aligned}$
Maximum $\mathrm{V}_{\text {SIG }}$ Slew Rate	$\mathrm{dv} / \mathrm{dt}$		20			20		20	V/ns	$\begin{aligned} & V_{P P}=40 \mathrm{~V}, \\ & V_{N N}=-160 \mathrm{~V} \end{aligned}$
			20			20		20		$\begin{aligned} & V_{P P}=100 \mathrm{~V}, \\ & V_{N N}=-100 \mathrm{~V} \end{aligned}$
			20			20		20		$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=190 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NN}}=-10 \mathrm{~V} \end{aligned}$
Off Isolation	KO	-30		-30	-33		-30		dB	$\begin{aligned} & \mathrm{f}=5 \mathrm{MHz}, \\ & 1 \mathrm{~K} \Omega / / 15 \mathrm{pF} \text { load } \end{aligned}$
		-58		-58			-58		dB	$\begin{aligned} & \mathrm{f}=5 \mathrm{MHz}, \\ & 50 \Omega \text { load } \end{aligned}$
Switch Crosstalk	K_{CR}	-60		-60	-70		-60		dB	$\begin{aligned} & \mathrm{f}=5 \mathrm{MHz}, \\ & 50 \Omega \text { load } \end{aligned}$
Output Switch Isolation Diode Current	$\mathrm{I}_{\text {ID }}$		300			300		300	mA	300ns pulse width, 2.0\% duty cycle
Off Capacitance SW to GND	$\mathrm{C}_{\text {SG(OFF) }}$	5.0	17	5.0	12	17	5.0	17	pF	0V, 1MHz
On Capacitance SW to GND	$\mathrm{C}_{\mathrm{SG}(\mathrm{ON})}$	25	50	25	38	50	25	50	pF	$0 \mathrm{~V}, 1 \mathrm{MHz}$
Positive Output Voltage Spike	$+\mathrm{V}_{\text {SPK }}$		150			150		150	mV	$\mathrm{R}_{\text {LOAD }}=50 \Omega$
Negative Output Voltage Spike	- $\mathrm{V}_{\text {SPK }}$		150			150		150	mV	$\mathrm{R}_{\text {LOAD }}=50 \Omega$

Operating Conditions*

Symbol	Parameter	Value
V_{PP}	Positive high voltage supply 1	+40 V to $\mathrm{V}_{\mathrm{NN}}+200 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply 1	-10 V to -160 V
$\mathrm{~V}_{\mathrm{DD}}$	Logic power supply voltage 1	+4.5 V to +13.2 V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$0.8 \mathrm{~V}_{\mathrm{DD}}$ to V_{DD}
V_{IL}	Low-level input voltage	0 V to $0.2 \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\mathrm{SIG}}$	Analog signal voltage peak-to-peak ${ }^{2}$	$\mathrm{~V}_{\mathrm{NN}}+10 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air-temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Notes:
1 Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
$2 \mathrm{~V}_{\text {SIG }}$ must be within V_{PP} and V_{NN} voltage range or floating during power up/down transition.

Truth Table

Data Inputs						$\overline{\text { LE }}$	CL	Switch States					
DO	D1	D2	D3	D4	D5			Y0	Y1	Y2	Y3	Y4	Y5
L						L	L	SW0					
H						L	L	SW0					
	L					L	L		$\overline{\text { SW1 }}$				
	H					L	L		SW1				
		L				L	L			$\overline{\text { SW2 }}$			
		H				L	L			SW2			
			L			L	L				SW3		
			H			L	L				SW3		
				L		L	L					$\overline{\text { SW4 }}$	
				H		L	L					SW4	
					L	L	L						$\overline{\text { SW5 }}$
					H	L	L						SW5
X	X	X	X	X	X	H	L			S PRE	OUS S		
X	X	X	X	X	X	X	H	$\overline{\text { SW0 }}$	$\overline{\text { SW1 }}$	SW2	SW3	$\overline{\mathrm{SW} 4}$	$\overline{\text { SW5 }}$

Test Circuits

DC Offset ON/OFF

Isolation Diode Current

$\mathrm{T}_{\text {ON }} / \mathrm{T}_{\text {OFF }}$ Test Circuit

$K_{\text {O }}=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
OFF Isolation

$Q=1000 \mathrm{pF} \times \Delta V_{\text {OUT }}$
Charge Injection

Output Voltage Spike

Logic Timing Waveforms

Block Diagram

Pin Configuration
HV209 48-Pin TQFP

Pin	Function	Pin	Function
1	$\mathrm{~N} / \mathrm{C}$	25	SW 5
2	SW 0	26	Y 5
3	Y 0	27	SW 5
4	SW 0	28	$\mathrm{~N} / \mathrm{C}$
5	$\mathrm{~N} / \mathrm{C}$	29	$\overline{\mathrm{SW} 3}$
6	SW 2	30	Y 3
7	Y 2	31	SW 3
8	$\overline{\mathrm{SW} 2}$	32	$\mathrm{~N} / \mathrm{C}$
9	$\mathrm{~N} / \mathrm{C}$	33	SW 1
10	SW 4	34	Y 1
11	Y 4	35	SW 1
12	SW 4	36	$\mathrm{~N} / \mathrm{C}$
13	$\mathrm{~N} / \mathrm{C}$	37	$\mathrm{R}_{\mathrm{GND}} 1$
14	$\mathrm{~N} / \mathrm{C}$	38	$\mathrm{~N} / \mathrm{C}$
15	$\mathrm{~N} / \mathrm{C}$	39	$\mathrm{D}_{\mathrm{OUT}}$
16	$\mathrm{~V}_{\mathrm{NN}}$	40	$\mathrm{~V}_{\mathrm{DD}}$
17	$\mathrm{~N} / \mathrm{C}$	41	$\mathrm{D}_{\text {IN }}$
18	$\mathrm{~N} / \mathrm{C}$	42	CLR
19	$\mathrm{~N} / \mathrm{C}$	43	$\underline{\mathrm{LE}}$
20	$\mathrm{~N} / \mathrm{C}$	44	CLK
21	V PP	45	GND
22	$\mathrm{~N} / \mathrm{C}$	46	$\mathrm{~N} / \mathrm{C}$
23	$\mathrm{~N} / C$	47	$\mathrm{~N} / \mathrm{C}$
24	$\mathrm{~N} / \mathrm{C}$	48	$\mathrm{R}_{\mathrm{GND} 2}$

Package Outline

top view
48-pin TQFP

