240V, 12-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs

Ordering Information

Device	Package Options		
		24 Lead SOW	Die
	240 V	HV510WG	HV510X

Features

- $\mathrm{HVCMOS}^{\circledR}$ technology
- Operating output voltage of 240 V
- Low power level shifting from 5 V to 240 V
\square Shift register speed $8 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
- 12 latched data outputs
- Output polarity and blanking
- CMOS compatible inputs

Forward and reverse shifting options

General Description

The HV510 is a low voltage serial to high voltage parallel converter with 12 high voltage push-pull outputs. This device has been designed to drive small capacitive loads such as piezo electric transducers. It can also be used in any application requiring multiple high voltage outputs, low current sourcing and sinking capabilities.
The device consists of a 12-bit shift register, 12 latches, and control logic to perform the polarity select and blanking of the outputs. A DIR pin controls the direction of data shift through the device. With DIR grounded, $D_{I O A}$ is Data In and $D_{I O B}$ is Data Out; data is shifted from $\mathrm{HV}_{\text {OUT }} 12$ to $\mathrm{HV}_{\text {OUT }} 1$. When DIR is at logic high, $D_{I O B}$ is Data In and $D_{I O A}$ is Data Out: data is then shifted from $\mathrm{HV}_{\text {OUT }}{ }^{1}$ to $\mathrm{HV}_{\text {OUT }}{ }^{12}$. Data is shifted through the shift register on the low to high transition of the clock. Data output buffers are provided for cascading devices. Operation of the shift register is not affected by the $\overline{\mathrm{LE}}, \overline{\mathrm{BL}}$, or the $\overline{\mathrm{POL}}$ inputs. Transfer of data from the shift register to the latch occurs when the $\overline{\mathrm{LE}}$ is high. The data in the latch is stored during $\overline{\mathrm{LE}}$ transition from high to low.

Absolute Maximum Ratings ${ }^{1}$

Supply voltage, V_{DD}	-0.5 V to +6 V
Supply voltage, V_{PP}	V_{DD} to 260 V
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{3}$	0.3 A
High voltage supply current 2	0.25 A
Continuous total power dissipation 3	750 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Notes:

1. All voltages are referenced to GND.
2. Connection to all power and ground pads is required. Duty cycle is limited by the total power dissipated in the package.
3. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to $85^{\circ} \mathrm{C}$ at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Electrical Characteristics (for $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=240 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
DC Characteristics

Symbol	Parameter		Min	Typ	Max	Units	Conditions
I_{DD}	V_{DD} supply current				4	mA	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz}, \mathrm{f}_{\mathrm{DATA}}=4 \mathrm{MHz} \\ & \overline{\mathrm{LE}}=\mathrm{LOW} \end{aligned}$
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current				200	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{DD}
I_{PP}	High voltage supply current				0.25	mA	$\mathrm{V}_{\mathrm{PP}}=240 \mathrm{~V}$ All outputs high
					0.25	mA	$\mathrm{V}_{\text {PP }}=240 \mathrm{~V}$ All outputs low
I_{H}	High-level logic input current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\text {IL }}$	Low-level logic input current				-10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
V_{OH}	High-level output	$\mathrm{HV}_{\text {OUT }}$	220			V	$\mathrm{V}_{\mathrm{PP}}=240 \mathrm{~V}, \mathrm{IHV}$ OUT $=-0.5 \mathrm{~mA}$
			175			V	$\mathrm{V}_{\mathrm{PP}}=200 \mathrm{~V}, \mathrm{IHV}_{\text {OUT }}=-0.5 \mathrm{~mA}$
		Data out	$\mathrm{V}_{\mathrm{DD}}-1 \mathrm{~V}$			V	$\mathrm{I}_{\text {DOUT }}=-100 \mu \mathrm{~A}$
V_{OL}	Low-level output	HV ${ }_{\text {OUT }}$			25	V	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{IHV}_{\text {OUT }}=1 \mathrm{~mA}$
		Data out			1.0	V	$\mathrm{I}_{\text {DOUT }}=100 \mu \mathrm{~A}$
V_{OC}	$\mathrm{HV}_{\text {OUT }}$ clamp voltage				$\mathrm{V}_{\mathrm{PP}}+1.5$	V	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$
					-1.5	V	$\mathrm{I}_{\mathrm{OL}}=-1 \mathrm{~mA}$
I_{OH}	Output Source Current		1.0			mA	$\mathrm{V}_{\mathrm{PP}}=240 \mathrm{~V}$
			0.8			mA	$V_{\text {PP }}=200 \mathrm{~V}$

AC Characteristics ${ }^{1}$ (For $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PP}}=200 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency			8	MHz	
t_{W}	Clock width high and low	62			ns	
t_{SU}	Data setup time before clock rises	35			ns	
t_{H}	Data hold time after clock rises	30			ns	
$\mathrm{t}_{\text {WLE }}$	Width of latch enable pulse	80			ns	
$\mathrm{t}_{\mathrm{DLE}}$	$\overline{\mathrm{LE}}$ delay time after rising edge of clock	35			ns	
$\mathrm{t}_{\text {SLE }}$	$\overline{\text { LE setup time before rising edge of clock }}$	40			ns	
$\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$	Time from latch enable to HV $\mathrm{O}_{\text {Out }}$			6.0	$\mu \mathrm{~s}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{DHL}}$	Delay time clock to data out high to low			125	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{DLH}}$	Delay time clock to data out low to high			125	ns	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	All logic inputs			5	ns	

Note:

1. Shift register speed can be as low as DC as long as Data Set-up and Hold Time meet the spec.

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Units
V_{DD}	Logic supply voltage	4.5	5.0	5.5	V
$\mathrm{~V}_{\mathrm{PP}}$	High voltage supply	60		240	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-0.9$		$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IL}	Low-level input voltage	0		0.9	V
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-40		+85	${ }^{\circ} \mathrm{C}$

Notes:

Power-up sequence should be the following:

1. Connect ground.
2. Apply $V_{\text {DD }}$.
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
[^0]Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs						Outputs			
	Data	CLK	LE	BL	POL	DIR	Shift Reg 1 2... 12	H 1	Outputs $2 \ldots 12$	Data Out
All on	X	X	X	L	L	X	* *...*	H	H...H	*
All off	X	X	X	L	H	X	*...*	L	L...L	*
Invert mode	X	X	L	H	L	X	* *...*	*	*...*	*
Load S/R	H or L	\uparrow	L	H	H	X	HorL *...*	*	*...*	*
Store data in latches	X	X	\downarrow	H	H	X	*...*	*	*...*	*
	X	X	\downarrow	H	L	X	*...*	*	*...*	*
Transparent latch mode	L	\uparrow	H	H	H	X	L *...*	L	*...*	*
	H	\uparrow	H	H	H	X	H *...*	H	*...*	*
I/O relation	$\mathrm{D}_{\text {IOA }}$	\uparrow	X	X	X	L	$Q_{n} \rightarrow Q_{n-1}$		-	$\mathrm{D}_{\text {10в }}$
	$\mathrm{D}_{\text {10в }}$	\uparrow	X	X	X	H	$Q_{n} \rightarrow Q_{n+1}$		-	$\mathrm{D}_{10 \mathrm{~A}}$

Notes:

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\uparrow=$ low-to-high transition, $\downarrow=$ high-to-low transition.

* $=$ dependent on previous stage's state before the last CLK or last $\overline{\mathrm{LE}}$ high.

Pin Configurations

Package Outline
HV510
24 Pin SOW Package

Pin	Function	1		24
1	$V_{\text {PP }}$	2	O	23
2	$\mathrm{D}_{\text {IOA }}$	3		22
3	$\overline{\mathrm{BL}}$	4		21
4	$\overline{\mathrm{POL}}$	5		20
5	$V_{\text {DD }}$	6		19
6	DIR	7		18
7	LGND	8		17
8	HVGND			17
9	CLK	9		16
10	LE	10		15
11	$\mathrm{D}_{\text {IOB }}$	11		14
12	$V_{\text {PP }}$	12		13
13	HV ${ }_{\text {OUT }} 12 / 1$			

$14 \mathrm{HV}_{\text {OUT }} 11 / 2$
$15 \mathrm{HV}_{\text {OUT }} 10 / 3$
$16 \mathrm{HV}_{\text {OUT }} 9 / 4$
top view
$17 \mathrm{HV}_{\text {OUT }} 8 / 5$
$18 \mathrm{HV}_{\text {OUT }} 7 / 6$
24-pin SOW
$19 \mathrm{HV}_{\text {OUT }} 6 / 7$
$20 \mathrm{HV}_{\text {OUT }} 5 / 8$
$21 \mathrm{HV}_{\text {OUT }} 4 / 9$
$22 \mathrm{HV}_{\text {OUT }} 3 / 10$
$23 \mathrm{HV}_{\text {OUT }} 2 / 11$
$24 \mathrm{HV}_{\text {OUT }} 1 / 12$

Note:
Pin designation for DIR $=H / L$
Example: for DIR $=\mathrm{H}$, Pin 13 is $\mathrm{HV}_{\text {OUT }} 12$
for DIR $=\mathrm{L}$, Pin 13 is $\mathrm{HV}_{\text {OUT }}{ }^{1}$

[^0]: 4. Apply V_{PP}.
 5. The V_{PP} should not drop below V_{DD} or float during operation.
