20-Channel Serial-Input Vacuum-Fluorescent Display Driver for Anode/Grid

Ordering Information

	Package Options					
Device	28 Pin Plastic DIP	28 Pin Plastic Chip Carrier	SOW-28	Die		
HV5812	HV5812P	HV5812PJ	HV5812WG	HV5812X		

Features

- Operating voltage of to up to 80V
- ☐ HVCMOS® technology for high performance
- High speed source driver
- ☐ Up to 3.3MHz data input rate
- 5.0V CMOS logic circuitry
- Excellent noise immunity
- Flexible high voltage supplies

General Description

The Supertex HV5812 is a 20-channel serial input vacuum fluorescent display driver. It combines a 20-bit CMOS shift register, data latches, and control circuitry with high voltage MOSFET outputs. The HV5812 is primarily designed for vacuum-fluorescent displays.

The CMOS shift register and latches allow direct interfacing with microprocessor-based systems. Data input rates are typically over 5.0MHz with 5V logic supply. Especially useful for inter-digit blanking, the BLANKING input disables the output source drives and turns on the sink drivers. Use with TTL may require external pull-up resistors to ensure an input logic high.

Absolute Maximum Ratings¹

V _{DD} logic power sup	-0.5V to +7.5V	
V _{PP} positive high vo	-0.5V to +90V	
Logic input voltages		-0.3V to V _{DD} +0.3V
Operating junction to	emperature range	-40°C to +150°C
Storage temperature	Э	-55°C to +150°C
Power dissipation	28-pin PLCC	1.9 Watt
	SOW-28	1.7 Watt
	28-pin DIP	2.0 Watt

Notes:

 All voltages are referenced to ground. Absolute maximum ratings are those values at which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

Electrical Characteristics

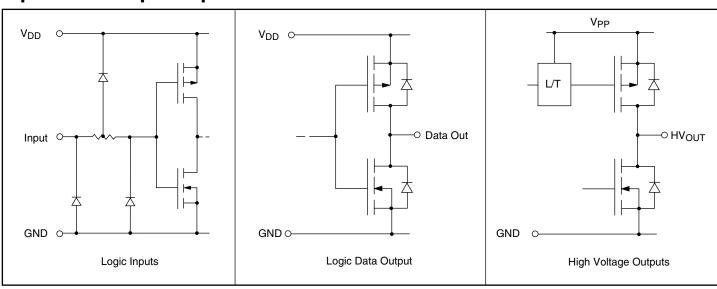
DC Characteristics (Over recommended operating conditions, $T_A = 25$ °C, unless otherwise noted)

Symbol	Parameter Parameter			Тур	Max	Units	Conditions
I _{DSS}	Output leakage current			-5.0	-15	μΑ	$V_{OUT} = 0V, T_A = +70^{\circ}C$
HV _{OH}	Output voltage		78	78.5		V	$I_{OUT} = -25 \text{mA}, V_{PP} = 80 \text{V}$ $T_{A} = +25 ^{\circ} \text{C}$
HV _{OH}	Output Voltage		77	78		V	$I_{OUT} = -25 \text{mA}, V_{PP} = 80 \text{V}$ $T_{A} = +125 ^{\circ}\text{C}$
HV _{OL}	Output Voltage	$V_{DD} = 5V$		1.5	3.0	V	$I_{OUT} = 1.0 \text{mA}, T_A = +25 ^{\circ}\text{C}$
HV _{OL}	Output Voltage	$V_{DD} = 5V$		2.3	4.0	V	$I_{OUT} = 1.0 \text{mA}, T_A = +125 ^{\circ}\text{C}$
I _{SINK}	Output pull-down current	$V_{DD} = 5V$	2.0	3.5		mA	$V_{OUT} = 5.0V \text{ to } V_{PP}$
V _{IH}	Logic input voltage	$V_{DD} = 5V$	3.5		5.3	V	
V _{IL}	Logic input voltage		-0.3		0.8	V	
I _{IH}	Logic input current	$V_{DD} = 5V$		0.05	0.5	μΑ	$V_{IN} = V_{DD}$
I₁∟	Logic input current	$V_{DD} = 5V$		-0.05	-0.5	μΑ	V _{IN} = 0.8V
V _{OH}	Serial data out $V_{DD} = 5V$		4.5	4.7		V	I _{OUT} = -200μA
V _{OL}	Serial data out	$V_{DD} = 5V$		200	250	mV	I _{OUT} = 200μA
f _{CLK}	Maximum clock frequency	$V_{DD} = 5V$		8.0		MHz	T _J = +25°C
		$V_{DD} = 5V$		5.0		MHz	T _J = +125°C
I _{DDQ}	Supply current	$V_{DD} = 5V$		100	300	μΑ	All outputs high
		$V_{DD} = 5V$		100	300	μΑ	All outputs low
I _{PPQ}	Supply current			10	100	μΑ	Outputs high, no Load
				10	100	μΑ	Outputs low, no Load

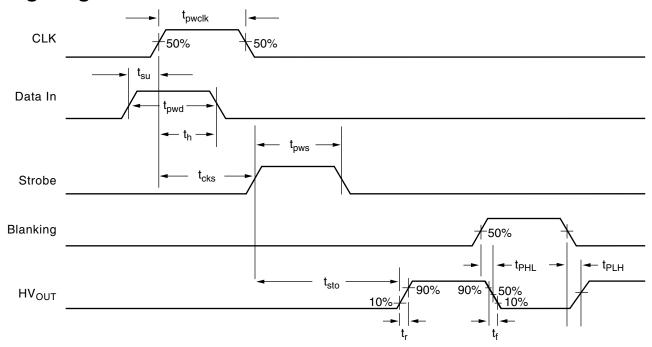
Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{DD}	Supply voltage	4.5		5.5	V
V _{PP}	Supply voltage	20		80	V
T _J	Operating junction temperature	-40		+125	°C

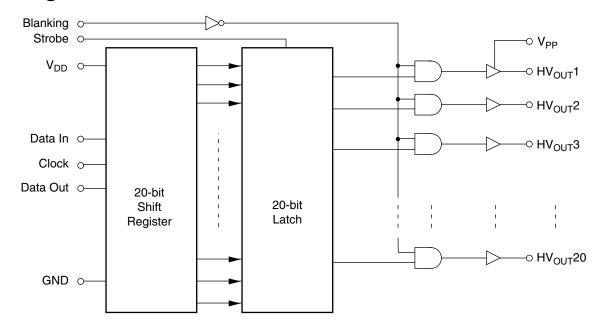
Power-up sequence should be the following:


- 1. Connect ground.
- 2. Apply V_{DD}.
- 3. Set all inputs (Data, CLK, etc.) to a known state.
- 4. Apply V_{PP}.
- 5. The V_{PP} should not drop below V_{DD} or float during operation.

Power-down sequence should be the reverse of the above.


AC Characteristics ($T_A = 25$ °C, over operating conditions unless otherwise noted)

Symbol	Parameter			Тур	Max	Units	Conditions
t _{PHL}	Blanking to output delay	V _{DD} = 5V		2000		ns	C _L = 30pF, 50% to 50%
t _{PLH}	Blanking to output delay	$V_{DD} = 5V$		1000		ns	$C_L = 30pF, 50\% \text{ to } 50\%$
t _f	Output fall time	$V_{DD} = 5V$		1450		ns	C _L = 30pF, 90% to 10%
t _r	Output rise time	$V_{DD} = 5V$		650		ns	C _L = 30pF, 10% to 90%
t _{su}	Data set-up time	•	75			ns	See timing diagram
t _h	Data hold time					ns	See timing diagram
t _{pwd}	Minimum data pulse width		150			ns	See timing diagram
t _{pwclk}	Minimum clock pulse width		150			ns	See timing diagram
t _{cks}	Minimum time between clock activation and strobe		300			ns	See timing diagram
t _{pws}	Minimum strobe pulse width		100			ns	See timing diagram
t _{sto}	Typical time between strobe activation and output transition			500		ns	See timing diagram


Input and Output Equivalent Circuits

Timing Diagram

Block Diagram

Function Table

Serial		Shift Register Contents	Serial	Strobe	Latch Content	Blanking	Output Content
Data Input	Input		Data Output	Input	I ₁ I ₂ I ₃ I _{N-1} I _N		I ₁ I ₂ I ₃ I _{N-1} I _N
Н	L to H	H R ₁ R ₂ R _{N-2} R _{N-1}	R _{N-1}				
L	L to H	L R ₁ R ₂ R _{N-2} R _{N-1}	R _{N-1}				
Х	H to L	R_1 R_2 R_3 R_{N-1} R_N	R_{N}				
		X X X X X	Χ	L	R_1 R_2 R_3 R_{N-1} R_N		
		P ₁ P ₂ P ₃ P _{N-1} P _N	P _N	Н	P ₁ P ₂ P ₃ P _{N-1} P _N	L	P ₁ P ₂ P ₃ P _{N-1} P _N
					X X X X X	Н	L L L L L

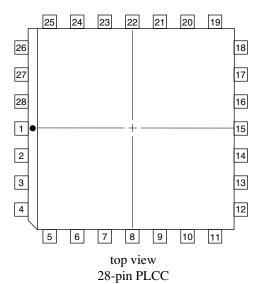
Note:

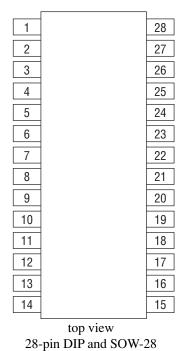
L = Low Logic Level H = High Logic Level

vel X = Irrelevant

P= Present State

R = Previous State


Pin Configuration


Package Outlines

HV5812

28-pin PLCC, 28-pin DIP, and SOW-28

zo-piii i	- LCC, 20-pili Dir, and 30 W-
Pad	Function
1	V_{pp}
2	Data Out
3	HV _{OUT} 20
4	HV _{OUT} 19
5	HV _{OUT} 18
6	HV _{OUT} 17
7	HV _{OUT} 16
8	HV _{OUT} 15
9	HV _{OUT} 14
10	HV _{OUT} 13
11	HV _{OUT} 12
12	HV _{OUT} 11
13	Blank
14	GND
15	Clock
16	Strobe
17	HV _{OUT} 10
18	HV _{OUT} 9
19	HV _{OUT} 8
20	HV _{OUT} 7
21	HV _{OUT} 6
22	HV _{OUT} 5
23	HV _{OUT} 4
24	HV _{OUT} 3
25	HV _{OUT} 2
26	HV _{OUT} 1
27	Data In
28	V_{DD}

11/12/01