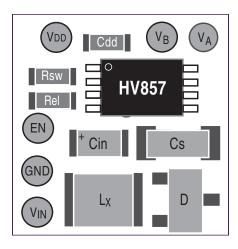
HV857DB1 EL Lamp Driver

Introduction


The Supertex HV857DB1 demo board contains all necessary circuitry to demonstrate the features of the HV857 EL lamp driver.

Simply connect it to a power supply and a lamp. For additional assistance in designing EL driver circuits, please refer to application notes AN-H33 (effect of external components on performance of Supertex EL drivers) and AN-H43 (EL lamp driver circuits to reduce audible lamp noise).

Specifications

Input Voltage	1.8V to 5.0V
Supply Current	25mA
Lamp Size Range	up to 2.6in ²
Lamp Frequency	250Hz
Converter Frequency	80KHz

Board Layout and Connections

Demo Board Connections:

EN Enable Input

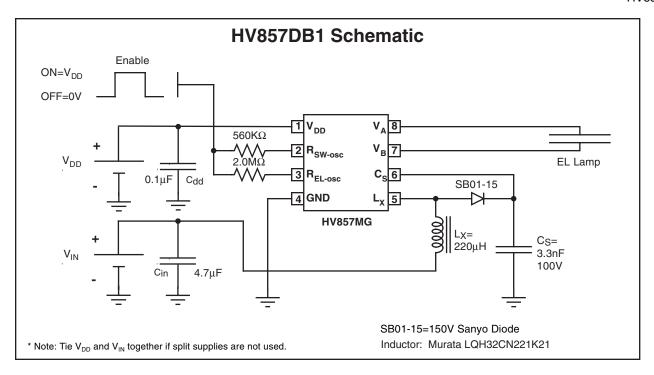
Enables/Disables the lamp driver. A logic high (connect to V_{DD}) enables the driver and a logic low (connect to GND) disables the driver. This input can be connected to a mechanical switch, or to a logic circuit output with a source impedance of less than $20 \text{K}\Omega$.

V_{DD} IC Supply

Supplies the HV857 EL driver IC. The supplied circuit is optimized for 3.0V operation. The operating range can be from 1.8V to 5.0V. Connect to positive terminal of a power supply.

V_{IN} Inductor Supply

Supplies the high voltage power converter. Connect to positive terminal of a power supply.


GND Circuit Ground

Connect to V_{DD} and V_{IN} negative terminals. Supply bypass capacitors for both V_{DD} and V_{IN} are provided on the demo board. External supply bypass capacitors are not required.

V_A and V_B Lamp Connections

Connect to an EL lamp. Polarity is irrelevant.

^{*} Note: Make sure all the above connections are made before powering up the supply voltages.

Typical Performance

The specific external components used in the above circuit are L_{χ} =220 μ H Murata (LQH32CN221K21), Cs= 3.3nF 100V NPO. The following was observed when driving a 2.6in² Green lamp.

V _{DD} =	V _{DD} = 1 (mA) V (V) f (Hz)	Brigh	tness		
V _{IN} (V)	I _{IN} (mA)	V _{cs} (V)	f _{EL} (Hz)	ft-lm	cd/m²
1.8	24.3	69.6	250	4.26	14.6
2.0	24.9	72.3	250	5.07	17.3
3.0	24.6	85.0	250	8.09	27.7
4.0	20.3	90.0	250	8.64	29.6
5.0	17.7	92.7	250	8.81	30.2

The following was observed when driving a 1.7in² Green lamp.

$V_{DD} = V_{IN}(V) \qquad I_{IN}(V)$	I (mA) V (V)	V (V)	f _{EL} (Hz)	Brightness	
	I _{IN} (mA)	(mA) V_{cs} (V)		ft-Im	cd/m²
1.8	22.1	76.3	250	4.91	16.8
2.0	20.5	79.8	250	5.76	19.7
3.0	17.3	89.0	250	7.25	24.8
4.0	13.7	92.0	250	7.49	25.6
5.0	11.7	93.5	250	7.54	25.8

The above circuit may need to be optimized further based on specification of the lamp used.