32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs

Ordering Information

Device	Package Options	
	44 J-Lead Quad Plastic Chip Carrier	Die in waffle pack
HV9708	HV9708PJ	HV9708X
HV9808	HV9808PJ	HV9808X

Features

- Processed with HVCMOS ${ }^{\circledR}$ technology
- Output voltages up to 80 V
- Low power level shifting
- Shift register speed 8 MHz
- Latched data outputs
- Forward and reverse shifting options
- Diode to V_{PP} allows efficient power recovery
- 5V CMOS compatible inputs

Absolute Maximum Ratings ${ }^{1}$

Supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{2}$	-0.5 V to +7 V
Output voltage, $\mathrm{V}_{\mathrm{PP}}{ }^{2}$	$\mathrm{~V}_{\mathrm{DD}}$ to +90 V
Logic input levels ${ }^{2}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Ground current ${ }^{3}$	1.5 A
Continuous total power dissipation ${ }^{4}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature $1.6 \mathrm{~mm}(1 / 16$ inch)	$260^{\circ} \mathrm{C}$
from case for 10 seconds	

Notes:

1. Device will survive (but operation may not be specified or guaranteed) at these extremes.
2. All voltages are referenced to GND.
3. Duty cycle is limited by the total power dissipated in the package.
4. For operation above $25^{\circ} \mathrm{C}$ ambient, derate linearly to $70^{\circ} \mathrm{C}$ at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

General Description

The HV97 and HV98 are low-voltage serial to high-voltage parallel converters with push-pull outputs. These devices have been designed for use as drivers for AC-electroluminescent displays. They can also be used in any application requiring multiple output high-voltage current sourcing and sinking capabilities such as driving plasma panels, vacuum fluorescent displays, or large matrix LCD displays. The inputs are fully CMOS compatible.
These devices consist of a 32-bit shift register, 32 latches, and control logic to perform the polarity select and blanking of the outputs. $\mathrm{HV}_{\text {OUT }} 1$ is connected to the first stage of the shift register through the polarity and blanking logic. Data is shifted through the shift register on the logic low to high transition of the clock. The HV97 shifts data in the clockwise direction when viewed from the top of the package and the HV98 shifts in the counterclockwise direction. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register ($\mathrm{HV}_{\text {OUT }} 32$). Operation of the shift register is not affected by the $\overline{\mathrm{LE}}$ (latch enable), $\overline{\mathrm{BL}}$ (blanking), or the $\overline{\mathrm{POL}}$ (polarity) inputs. Transfer of data from the shift register to the latch occurs when the $\overline{\mathrm{LE}}$ (latch enable) input is high. The data in the latch is stored when $\overline{\mathrm{LE}}$ is low.

[^0]Electrical Characteristics ($\mathrm{V}_{\mathrm{PP}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
DC Characteristics

Symbol	Parameter	Min	Max	Units	Conditions
I_{PP}	$\mathrm{V}_{\text {PP }}$ Supply Current		100	$\mu \mathrm{A}$	$\mathrm{HV}_{\text {Out }}$ outputs HIGH to LOW
$\mathrm{I}_{\mathrm{DDQ}}$	I_{DD} Supply Current (Quiescent)		100	$\mu \mathrm{A}$	All inputs $=\mathrm{V}_{\mathrm{DD}}$ or GND
I_{DD}	I_{DD} Supply Current (Operating)		15	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}, \\ & \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz} \end{aligned}$
V_{OH} (Data)	Shift Register Output Voltage	$\mathrm{V}_{\mathrm{DD}}-0.5$		V	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$ (Data)	Shift Register Output Voltage		0.5	V	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$
I_{IH}	Current Leakage, any input		1	$\mu \mathrm{A}$	Input = V_{DD}
I_{IL}	Current Leakage, any input		-1	$\mu \mathrm{A}$	Input = GND
$\mathrm{V}_{\text {OC }}$	$\mathrm{HV}_{\text {OUt }}$ Output Clamp Diode Voltage		-1.5	V	$\mathrm{I}_{\mathrm{OC}}=-5 \mathrm{~mA}$
V_{OH}	$\mathrm{HV}_{\text {Out }}$ Output when Sourcing	52		V	$\mathrm{I}_{\mathrm{OH}}=-20 \mathrm{~mA}, 0$ to $70^{\circ} \mathrm{C}$
V_{OL}	$\mathrm{HV}_{\text {OUT }}$ Output when Sinking		4	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}, 0$ to $70^{\circ} \mathrm{C}$

AC Characteristics

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock Frequency		8	MHz	
t_{WL} or t_{WH}	Clock width, HIGH or LOW	62		ns	
$\mathrm{t}_{\text {SU }}$	Setup time before CLK rises	25		ns	
t_{H}	Hold time after CLK rises	10		ns	
$\mathrm{t}_{\text {DLH }}$ (Data)	Data Output Delay after L to H CLK		110	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DHL }}$ (Data)	Data Output Delay after H to L CLK		110	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLE }}$	$\overline{\text { LE }}$ Delay after L to H CLK	50		ns	
$\mathrm{t}_{\text {WLE }}$	Width of $\overline{\text { LE Pulse }}$	50		ns	
$\mathrm{t}_{\text {SLE }}$	$\overline{\text { LE S Setup Time before L to H CLK }}$	50		ns	
t_{ON}	Delay from $\overline{\mathrm{LE}}$ to $\mathrm{HV}_{\text {OUT }}$, L to H		500	ns	
$\mathrm{t}_{\text {OFF }}$	Delay from $\overline{\mathrm{LE}}$ to $\mathrm{HV}_{\text {OUT }}$, H to L		500	ns	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	Comments
V_{DD}	Logic Voltage Supply	4.5	5.5	V	
$\mathrm{~V}_{\mathrm{PP}}$	High Voltage Supply	8.0	80	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	$\mathrm{V}_{\mathrm{DD}}-0.5$	$\mathrm{~V}_{\mathrm{DD}}$	V	
V_{IL}	Input LOW Voltage	0	0.5	V	
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	0	8	MHz	
T_{A}	Operating free-air temperature	-40	+85	${ }^{\circ} \mathrm{C}$	

Notes:

Power-up sequence should be the following:

1. Connect ground.
2. Apply V_{DD}.
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
4. Apply V_{Pp}.

Power-down sequence should be the reverse of the above.
5. The $V_{P P}$ should not drop below $V_{D D}$ or float during operations.

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs					Outputs			
	Data	CLK	$\overline{\text { LE }}$	$\overline{\mathrm{BL}}$	$\overline{\mathrm{POL}}$	$\begin{aligned} & \text { Shift Reg } \\ & 1 \quad 2 \ldots . .32 \end{aligned}$	H 1	$\begin{aligned} & \text { utputs } \\ & 2 \ldots . .32 \end{aligned}$	Data Out
All on	X	X	X	L	L	*...*	H	H...H	*
All off	X	X	X	L	H	*...*	L	L...L	*
Invert mode	X	X	L	H	L	*...*	*	*...*	*
Load S/R	H or L	\uparrow	L	H	H	H or L *...*	*	*...*	*
Load	X	H or L	\uparrow	H	H	* *...*	*	*...*	*
latches	X	H or L	\uparrow	H	L	* *...*	*	*...*	*
Transparent	L	\uparrow	H	H	H	L *...*	L	*...*	*
	H	\uparrow	H	H	H	H *...*	H	*...*	*

Notes:

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\uparrow=$ low-to-high transition.

* $=$ dependent on previous stage's state before the last CLK or last $\overline{\mathrm{LE}}$ high.

Pin Configurations

Package Outline

HV97
44 Pin J-Lead Package

Pin	Function	Pin	Function
1	$\mathrm{HV}_{\text {OUT }} 17$	23	GND
2	$\mathrm{HV}_{\text {OUT }} 16$	24	$\mathrm{~V}_{\text {PP }}$
3	$\mathrm{HV}_{\text {OUT }} 15$	25	$\mathrm{~V}_{\text {DD }}$
4	$\mathrm{HV}_{\text {OUT }} 14$	26	Latch Enable
5	$\mathrm{HV}_{\text {OUT }} 13$	27	Data In
6	$\mathrm{HV}_{\text {OUT }} 12$	28	Blanking
7	$\mathrm{HV}_{\text {OUT }} 11$	29	NC
8	$\mathrm{HV}_{\text {OUT }} 10$	30	$\mathrm{HV}_{\text {out }} 32$
9	$\mathrm{HV}_{\text {OUT }} 9$	31	$\mathrm{HV}_{\text {OUT }} 31$
10	$\mathrm{HV}_{\text {OUT }} 8$	32	$\mathrm{HV}_{\text {OUT }} 30$
11	$\mathrm{HV}_{\text {OUT }} 7$	33	$\mathrm{HV}_{\text {OUT }} 29$
12	$\mathrm{HV}_{\text {OUT }} 6$	34	$\mathrm{HV}_{\text {OUT }} 28$
13	$\mathrm{HV}_{\text {OUT }} 5$	35	$\mathrm{HV}_{\text {OUT }} 27$
14	$\mathrm{HV}_{\text {OUT }} 4$	36	$\mathrm{HV}_{\text {OUT }} 26$
15	$\mathrm{HV}_{\text {OUT }} 3$	37	$\mathrm{HV}_{\text {OUT }} 25$
16	$\mathrm{HV}_{\text {OUT } 2}$	38	$\mathrm{HV}_{\text {OUT }} 24$
17	$\mathrm{HV}_{\text {OUT }} 1$	39	$\mathrm{HV}_{\text {OUT }} 23$
18	Data Out	40	$\mathrm{HV}_{\text {OUT }} 22$
19	NC_{20}	41	$\mathrm{HV}_{\text {OUT }} 21$
21	$\mathrm{NC}^{\text {Polarity }}$	42	$\mathrm{HV}_{\text {OUT }} 20$
22	Clock^{43}	$\mathrm{HV}_{\text {OUT }} 19$	
	44	$\mathrm{HV}_{\text {OUT }} 18$	

top view
44-pin J-Lead Package

HV98

44 Pin J-Lead Package

Pin	Function	Pin	Function
1	HV ${ }_{\text {OUT }} 16$	23	GND
2	$\mathrm{HV}_{\text {OUT }} 17$	24	$V_{\text {PP }}$
3	HV ${ }_{\text {OUT }} 18$	25	$V_{D D}$
4	$\mathrm{HV}_{\text {OUT }} 19$	26	Latch Enable
5	$\mathrm{HV}_{\text {OUT }} 20$	27	Data In
6	$\mathrm{HV}_{\text {OUT }} 21$	28	Blanking
7	$\mathrm{HV}_{\text {OUT }} 22$	29	NC
8	$\mathrm{HV}_{\text {OUT }} 23$	30	HV ${ }_{\text {OUT }} 1$
9	$\mathrm{HV}_{\text {OUT }} 24$	31	HV ${ }_{\text {OUT }}{ }^{2}$
10	$\mathrm{HV}_{\text {OUT }} 25$	32	HV ${ }_{\text {OUT }} 3$
11	$\mathrm{HV}_{\text {OUT }} 26$	33	HV ${ }_{\text {OUT }} 4$
12	$\mathrm{HV}_{\text {OUT }} 27$	34	HV ${ }_{\text {OUT }} 5$
13	$\mathrm{HV}_{\text {OUT }} 28$	35	HV ${ }_{\text {OUT }} 6$
14	$\mathrm{HV}_{\text {OUT }} 29$	36	HV ${ }_{\text {OUT }}{ }^{7}$
15	$\mathrm{HV}_{\text {OUT }} 30$	37	HV ${ }_{\text {OUT }} 8$
16	$\mathrm{HV}_{\text {OUT }} 31$	38	HV ${ }_{\text {OUT }} 9$
17	HV ${ }_{\text {OUT }} 32$	39	HV ${ }_{\text {OUT }} 10$
18	Data Out	40	HV ${ }_{\text {OUt }} 11$
19	NC	41	HV ${ }_{\text {OUt }} 12$
20	NC	42	HV ${ }_{\text {OUt }} 13$
21	Polarity	43	HV ${ }_{\text {OUT }} 14$
22	Clock	44	HV ${ }_{\text {OUt }} 15$

[^0]: 02/96/022

