

3.3V 32M x 64/72-Bit SDRAM Modules 3.3V 64M x 64/72-Bit SDRAM Modules

HYS64/72V32200GU HYS64/72V64220GU

PC100-168 pin unbuffered DIMM Modules

- 168 Pin unbuffered 8 Byte Dual-In-Line SDRAM Modules for PC main memory applications
- One bank 32M x 64 and 32M x 72 organisation
- Two bank 64M x 64 and 64M x 72 organisation
- Optimized for byte-write non-parity or ECC applications
- Fully PC board layout compatible to INTEL's Rev. 1.0 module specification
- JEDEC standard Synchronous DRAMs (SDRAM)
- SDRAM Performance:

		-8	-8A	-8B	Units
fcK	Clock frequency (max.)	100	100	100	MHz
t _{AC}	Clock access time	6	6	6	ns

Programmed Latencies:

Produc	Product Speed		tRCD	tRP
-8	PC100	2	2	2
-8A	PC100	3	2	2
-8B	PC100	3	2	3

- Single $+3.3V(\pm 0.3V)$ power supply
- Programmable CAS Latency, Burst Length and Wrap Sequence (Sequential & Interleave)
- · Auto Refresh (CBR) and Self Refresh
- · Decoupling capacitors mounted on substrate
- All inputs, outputs are LVTTL compatible
- Serial Presence Detect with E²PROM
- Uses SIEMENS 256Mbit SDRAM components in 32M x 8 organisation and TSOPII-54 packages
- Gold contact pad
- Card Size: 133,35 mm x 31.75 mm x 4,00 mm

The HYS64/72V32200 and HYS64/72V64220 are industry standard 168-pin 8-byte Dual in-line Memory Modules (DIMMs) which are organised as 32M x 64 and 32M x 72 in 1 bank and 64M x 64 and 64M x 72 in two banks high speed memory arrays designed with 256M Synchronous DRAMs (SDRAMs) for non-parity and ECC applications. The DIMMs use -8 and -8B speed sort for 32M x 8 SDRAM devices in TSOP54 packages to meet the PC100 requirement. Decoupling capacitors are mounted on the PC board. The PC board design is according to INTEL's PC 100 module specification.

The DIMMs have a serial presence detect, implemented with a serial E²PROM using the two pin I²C protocol. The first 128 bytes are utilized by the DIMM manufacturer and the second 128 bytes are available to the end user.

All SIEMENS 168-pin DIMMs provide a high performance, flexible 8-byte interface in a 133,35 mm long footprint, with 1,25" (31,75 mm) height.

Ordering Information

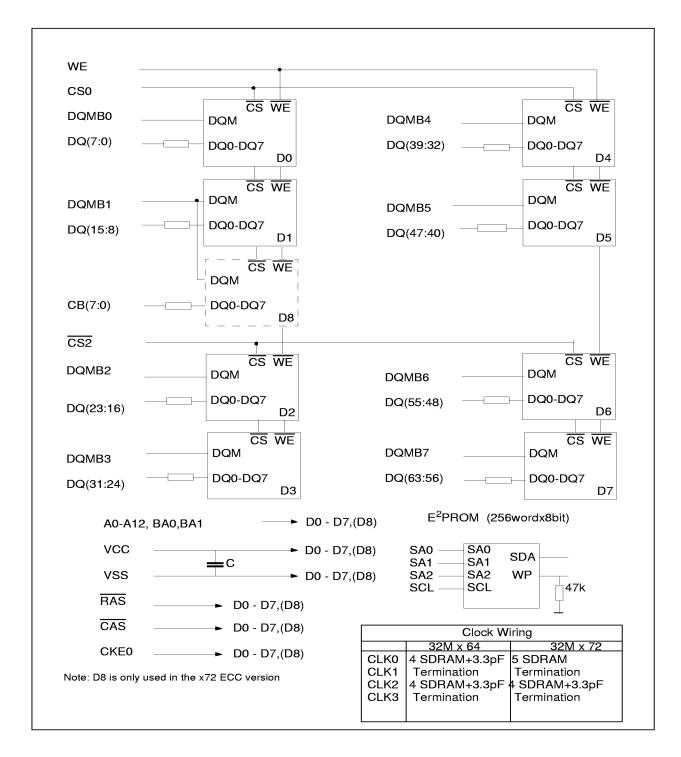
Туре	Code	Package	Descriptions	Module Height
HYS 64V32200GU-8	PC100-222-620	L-DIM-168-30	PC100 32M x 64 1 bank SDRAM module	1,25"
HYS 72V32200GU-8	PC100-222-620	L-DIM-168-30	PC100 32M x 72 1 bank SDRAM module	1,25"
HYS 64V64220GU-8	PC100-222-620	L-DIM-168-30	PC100 64M x 64 2 bank SDRAM module	1,25"
HYS 72V64220GU-8	PC100-222-620	L-DIM-168-30	PC100 64M x 72 2 bank SDRAM module	1,25"
HYS 64V32200GU-8A	PC100-222-620	L-DIM-168-30	PC100 32M x 64 1 bank SDRAM module	1,25"
HYS 72V32200GU-8A	PC100-222-620	L-DIM-168-30	PC100 32M x 72 1 bank SDRAM module	1,25"
HYS 64V64220GU-8A	PC100-222-620	L-DIM-168-30	PC100 64M x 64 2 bank SDRAM module	1,25"
HYS 72V64220GU-8A	PC100-222-620	L-DIM-168-30	PC100 64M x 72 2 bank SDRAM module	1,25"
HYS 64V32200GU-8B	PC100-323-620	L-DIM-168-30	PC100 32M x 64 1 bank SDRAM module	1,25"
HYS 72V32200GU-8B	PC100-323-620	L-DIM-168-30	PC100 32M x 72 1 bank SDRAM module	1,25"
HYS 64V64220GU-8B	PC100-323-620	L-DIM-168-30	PC100 64M x 64 2 bank SDRAM module	1,25"
HYS 72V64220GU-8B	PC100-323-620	L-DIM-168-30	PC100 64M x 72 2 bank SDRAM module	1,25"

Pin Names

A0-A12	Address Inputs	CLK0 - CLK3	Clock Input
BA0, BA1	Bank Selects	DQMB0 - DQMB7	Data Mask
DQ0 - DQ63	Data Input/Output	CS0 - CS3	Chip Select
CB0-CB7	Check Bits (x72 organisation only)	Vcc	Power (+3.3 Volt)
RAS	Row Address Strobe	Vss	Ground
CAS	Column Address Strobe	SCL	Clock for Presence Detect
WE	Read / Write Input	SDA	Serial Data Out for Presence Detect
CKE0, CKE1	Clock Enable	N.C. / DU	No Connection

Address Format:

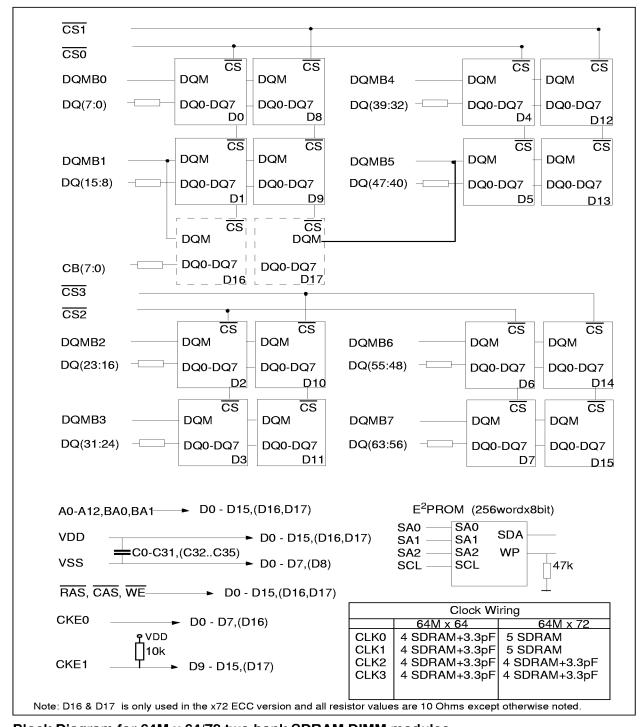
	Part Number	Rows	Columns	Banks	Refresh	Period	Interval
32M x 64/72	HYS64/72V32200GU	13	10	2	8k	64 ms	7,8 μs
64M x 64/72	HYS64/72V64220GU	13	10	2	8k	64 ms	7,8 μs



Pin Configuration

PIN#	Symbol	PIN#	Symbol	PIN#	Symbol	PIN#	Symbol
	1100				1100		1100
1	VSS	43	VSS	85	VSS	127	VSS
2	DQ0	44	DU	86	DQ32	128	CKE0
3	DQ1	45	CS2	87	DQ33	129	CS3
4	DQ2	46	DQMB2	88	DQ34	130	DQMB6
5	DQ3	47	DQMB3	89	DQ35	131	DQMB7
6	vcc	48	DU	90	VCC	132	NC
7	DQ4	49	VCC	91	DQ36	133	VCC
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	NC (CB2)	94	DQ39	136	CB6
11	DQ8	53	NC (CB3)	95	DQ40	137	CB7
12	VSS	54	VSS	96	VSS	138	VSS
13	DQ9	55	DQ16	97	DQ41	139	DQ48
14	DQ10	56	DQ17	98	DQ42	140	DQ49
15	DQ11	57	DQ18	99	DQ43	141	DQ50
16	DQ12	58	DQ19	100	DQ44	142	DQ51
17	DQ13	59	VCC	101	DQ45	143	VCC
18	VCC	60	DQ20	102	VCC	144	DQ52
19	DQ14	61	NC	103	DQ46	145	NC
20	DQ15	62	DU	104	DQ47	146	DU
21	NC (CB0)	63	CKE1	105	NC (CB4)	147	NC
22	NC (CB1)	64	VSS	106	NC (CB5)	148	VSS
23	VSS	65	DQ21	107	VSS	149	DQ53
24	NC	66	DQ22	108	NC	150	DQ54
25	NC	67	DQ23	109	NC	151	DQ55
26	vcc	68	vss	110	VCC	152	vss
27	WE	69	DQ24	111	CAS	153	DQ56
28	DQMB0	70	DQ25	112	DQMB4	154	DQ57
29	DQMB1	71	DQ26	113	DQMB5	155	DQ58
30	CS0	72	DQ27	114	CS1	156	DQ59
31	DU	73	vcc	115	RAS	157	VCC
32	vss	74	DQ28	116	vss	158	DQ60
33	A0	75	DQ29	117	A1	159	DQ61
34	A2	76	DQ30	118	A3	160	DQ62
35	A4	77	DQ31	119	A5	161	DQ63
36	A6	78	VSS	120	A7	162	VSS
37	A8	79	CLK2	121	A9	163	CLK3
38	A10	80	NC NC	122	BAO	164	NC
39	BA1	81	WP	123	A11	165	SA0
40	VCC	82	SDA	124	VCC	166	SA1
41	VCC	83	SCL	125	CLK1	167	SA2
42	CLK0	84	VCC	126	A12	168	VCC

Note: Pinnames in brackets are for the x72 ECC versions



Block Diagram for 32M x 64/72 one bank SDRAM DIMM modules

INFINEON Technologies

Block Diagram for 64M x 64/72 two bank SDRAM DIMM modules

DC Characteristics

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm SS}$ = 0 V; $V_{\rm DD,}V_{\rm DDQ}$ = 3.3 V \pm 0.3 V

Parameter	Symbol			Unit
		min.	max.	
Input high voltage	$V_{ m IH}$	2.0	Vcc+0.3	V
Input low voltage	V_{IL}	- 0.5	0.8	V
Output high voltage ($I_{OUT} = -4.0 \text{ mA}$)	V_{OH}	2.4	_	V
Output low voltage ($I_{OUT} = 4.0 \text{ mA}$)	V_{OL}	_	0.4	V
Input leakage current, any input (0 V < $V_{\rm IN}$ < 3.6 V, all other inputs = 0 V)	$I_{ m I(L)}$	- 40	40	μА
Output leakage current (DQ is disabled, 0 V < $V_{\rm OUT}$ < $V_{\rm CC}$)	$I_{ m O(L)}$	- 40	40	μΑ

Capacitance

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm DD}$ = 3.3 V \pm 0.3 V, f = 1 MHz

Parameter	Symbol		Limit '	Values		Unit
		max. 32Mx64	max. 32Mx72	max 64Mx64	max. 64Mx72	
Input capacitance (A0 to A11, BA0, BA1, RAS, CAS, WE)	C_{11}	60	70	90	100	pF
Input capacitance (CS0 -CS3,)	C_{12}	30	35	30	35	pF
Input capacitance (CLK0 - CLK3)	$C_{ ext{ICL}}$	35	40	35	40	pF
Input capacitance (CKE0, CKE1)	C_{13}	50	55	55	60	pF
Input capacitance (DQMB0 - DQMB7)	C_{I4}	20	20	25	25	pF
Input / Output capacitance (DQ0-DQ63, CB0-CB7)	C_{1O}	13	13	20	20	pF
Input Capacitance (SCL,SA0-2)	C _{sc}	8	8	8	8	pF
Input/Output Capacitance	C _{sd}	10	10	10	10	pF

Operating Currents per SDRAM ($T_A = 0$ to 70^{o} C, Vdd = 3.3V ± 0.3 V 1)

(Recommended Operating Conditions unless otherwise noted)

Parameter & Test Condition		Symb.	-8/-8 A	-8B		Note
			max.	max.		
OPERATING CURRENT		ICC1				
trc=trcmin., tck=tckmin. Ouputs open, Burst Length = 4, CL=3 All banks operated in random access, all banks operated in ping-pong manner to maximize gapless data access		x8	210	165	mA	2
PRECHARGE STANDBY CURRENT in Power Down Mode	tck = min.	ICC2P	2	2	mA	2
CS =VIH (min.), CKE<=Vil(max)					-	
PRECHARGE STANDBY CURRENT in Non-Power Down Mode CS = VIH (min.), CKE>=Vih(min)	tck = min.	ICC2N	19	16	mA	2
NO OPERATING CURRENT	CKE>=VIH(min.)	ICC3N	45	40	mA	2
tck = min., \overline{CS} = VIH(min), active state (max. 4 banks)	CKE<=VIL(max.)	ICC3P	10	10	mA	2
BURST OPERATING CURRENT		ICC4				
tck = min., Read command cycling		x8	210	165	mA	2,3
AUTO REFRESH CURRENT tck = min., Auto Refresh command cycling		ICC5	240	195	mA	2
SELF REFRESH CURRENT Self Refresh Mode, CKE=0.2V	standard version	ICC6	2.5	2.5	mA	2

Notes:

- 1. All values are shown per one SDRAM component.
- 2. These parameters depend on the cycle rate. These values are measured at 100 MHz for -8 and at 66 MHz for -10 parts. Input signals are changed once during tck, excepts for ICC6 and for standby currents when tck=infinity.
- 3. These parameters are measured with continuous data stream during read access and all DQ toggling. CL=3 and BL=4 is assumed and the VDDQ current is excluded.

AC Characteristics 1)2)

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm SS}$ = 0 V; $V_{\rm CC}$ = 3.3 V \pm 0.3 V, $t_{\rm T}$ = 1 ns

Parameter	Symbol			Limit '	Values	3		Unit
		-8 PC100- 222		-8A PC100- 322		-8B PC100- 323		_
		min.	max.	min.	max.	min.	max.	

Clock and Clock Enable

Cioon and Cioon I										
Clock Cycle Time										
	$\overline{\text{CAS}}$ Latency = 3	$t_{\rm CK}$	10	-	10	_	10	_	ns	
	\overline{CAS} Latency = 2		10	-	12	_	15	_	ns	
Clock Frequency										
	$\overline{\text{CAS}}$ Latency = 3	t_{CK}	-	100	–	100	_	100	MHz	
	\overline{CAS} Latency = 2		-	100	-	83	_	66	MHz	
Access Time from Clock										
	$\overline{\text{CAS}}$ Latency = 3	t_{AC}	-	6	_	6	_	6	ns	2,
	$\overline{\text{CAS}}$ Latency = 2	,,,,	-	6	–	6	_	7	ns	3
Clock High Pulse V	Vidth	t _{CH}	3	_	3	_	3	_	ns	
Clock Low Pulse W	/idth	t_{CL}	3	_	3	_	3	_	ns	
Transition time		t_{T}	0.5	10	0.5	10	0.5	10	ns	

Setup and Hold Times

Input Setup Time	t _{IS}	2	_	2	_	2	_	ns	4
Input Hold Time	t _{IH}	1	_	1	_	1	_	ns	4
CKE Setup Time	t _{CKS}	2	_	2	_	2	_	ns	4
CKE Hold Time	t _{CKH}	1	_	1	_	1	_	ns	4
Mode Register Set-up time	$t_{ m RSC}$	16	_	16	_	20	_	ns	
Power Down Mode Entry Time	t _{SB}	0	8	0	10	0	10	ns	

Common Parameters

Row to Column Delay Time	$t_{ m RCD}$	20	_	20		20	_	ns	5
Row Precharge Time	t_{RP}	20	_	20		30	_	ns	5
Row Active Time	t_{RAS}	48	100k	48	100k	60	100k	ns	5
Row Cycle Time	$t_{ m RC}$	70	_	70	_	80	_	ns	5

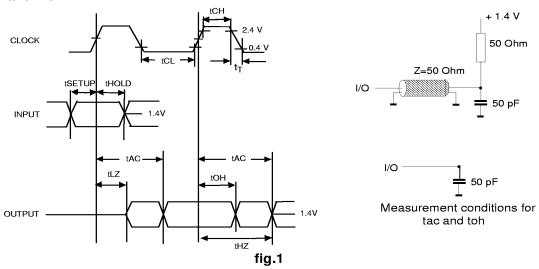
Parameter	Symbol			Unit					
		-8 PC100- 222		-8A PC100- 322		-8B PC100- 323			
		min.	max.	min.	max.	min.	max.	1	
Activate(a) to Activate(b) Command period	t_{RRD}	16	_	16		20	_	ns	5
CAS(a) to CAS(b) Command period	$t_{\rm CCD}$	1	_	1	_	1	_	CLK	

Refresh Cycle

Refresh Period (8192 cycles)	t_{REF}	_	64	1	64	1	64	ms	
Self Refresh Exit Time	t_{SREX}	10		10		10		ns	

Read Cycle

Data Out Hold Time	t _{OH}	3	_	3	_	3	_	ns	2
Data Out to Low Impedance Time	t_{LZ}	0	_	0	_	0	_	ns	
Data Out to High Impedance Time	t_{HZ}	3	8	3	8	3	10	ns	
DQM Data Out Disable Latency	t_{DQZ}	_	2	_	2	_	2	CLK	


Write Cycle

Data Input to Precharge (write recovery)	t_{WR}	2	_	2	_	2	_	CLK	
DQM Write Mask Latency	t_{DQW}	0	_	0	_	0	_	CLK	

Notes:

- 1. An initial pause of 100μs is required after power-up, then a Precharge All Banks command must be given followed by 8 Auto Refresh (CBR) cycles before the Mode Register Set Operation can begin.
- 2. AC timing tests have $V_{il} = 0.4 \text{ V}$ and $V_{ih} = 2.4 \text{ V}$ with the timing referenced to the 1.4 V crossover point. The transition time is measured between V_{ih} and V_{il} . All AC measurements assume t_T =1ns with the AC output load circuit show. Specified tac and toh parameters are measured with a 50 pF only, without any resisitve termination and with a input signal of 1V / ns edge rate between 0.8V and 2.0 V.

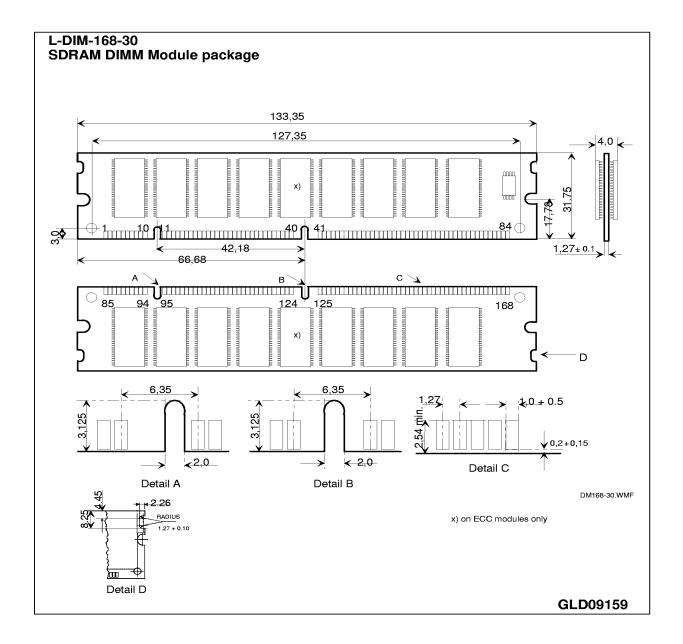
- 3. If clock rising time is longer than 1ns, a time ($t_T/2$ -0.5) ns has to be added to this parameter.
- 4. Rated at 1.5 V
- 5. If t_T is longer than 1 ns, a time (t_T -1) ns has to be added to this parameter.
- 6. Any time that the refresh Period has been exceeded, a minimum of two Auto (CBR) Refresh commands must be given to "wake-up" the device.
- 7. Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command is registered.
- 8. Referenced to the time which the output achieves the open circuit condition, not to output voltage levels.

A serial presence detect storage device - E^2PROM - is assembled onto the module. Information about the module configuration, speed, etc. is written into the E^2PROM device during module production using a serial presence detect protocol (I^2C synchronous 2-wire bus).

SPD-Table for 256MBit SDRAM based PC100 Modules:

Byte#	Description	SPD Entry Value	Hex							
			32Mx64	32Mx64	32Mx64	32Mx72	32Mx72	32Mx72		
			one	one	one	one	one	one		
			bank	bank	bank	bank	bank	bank		
	Normalia at a CDD hosta	100	-8 80	-8A	-8B 80	-8	-8A	-8B 80		
0	Number of SPD bytes Total bytes in Serial PD	128		80		80	80			
$\frac{1}{2}$	1	256 SDRAM	08	08 04	08 04	08 04	08 04	08 04		
3	Memory Type									
	Number of Row Addresses (without BS bits)	13	0D	0D	0D	0D	0D	0D		
4	Number of Column Addresses (for 32Mx8 SDRAMs)	10	OA	0A	0A	0A	0A	OA		
5	Number of DIMM Banks	1	01	01	01	01	01	01		
6	Module Data Width	64 / 72	40	40	40	48	48	48		
7	Module Data Width (cont'd)	0	00	00	00	00	00	00		
8	Module Interface Levels	LVTTL	01	01	01	01	01	01		
9	SDRAM Cycle Time at CL=3	10.0 ns	A0	A0	A0	A0	A0	A0		
10	SDRAM Access time from Clock at CL=3	6.0 ns	60	6.0	60	60	60	60		
11	Dimm Config	none / ECC	00	00	00	02	02	02		
12	Refresh Rate/Type	Self-Refresh, 7,8μs	82	82	82	82	82	82		
13	SDRAM width, Primary	x8	08	08	08	08	08	08		
14	Error Checking SDRAM data width	n/a / x8	00	00	00	08	08	08		
15	Minimum clock delay for back-to-back random column address	t _{ccd} = 1 CLK	01	01	01	01	01	01		
16	Burst Length supported	1, 2, 4 & 8	0F	0F	0F	0F	0F	0F		
17	Number of SDRAM banks	4	04	04	04	04	04	04		
18	Supported CAS Latencies	CAS latency = 2 & 3	06	06	06	06	06	06		
19	CS Latencies	CS latency = 0	01	01	01	01	01	01		
20	WE Latencies	Write lat- ency = 0	01	01	01	01	01	01		
21	SDRAM DIMM module attributes	non buffered/ non reg.	00	00	00	00	00	00		
22	SDRAM Device Attributes :General	Vcc tol +/- 10%	0E	0E	0E	0E	0E	E		
23	Min. Clock Cycle Time at CAS Latency = 2	10.0 / 15.0 ns	A0	F0	F0	A0	F0	F0		
24	Max. data access time from Clock for CL=2	6.0 / 7.0 ns	60	60	70	60	60	70		

Byte#	Description	SPD Entry Value			Н	ex		
			32Mx64	32Mx64	32Mx64	32Mx72	32Mx72	32Mx72
			one	one	one	one	one	one
			bank	bank	bank	bank	bank	bank
			-8	-8A	-8B	-8	-8A	-8B
25	Minimum Clock Cycle Time at CL = 1	not suppor- ted	FF	FF	FF	FF	FF	FF
26	Maximum Data Access Time from Clock at CL=1	not suppor- ted	FF	FF	FF	FF	FF	FF
27	Minimum Row Precharge Time	20 / 30 ns	14	14	1E	14	14	1E
28	Minimum Row Active to Row Active delay tRRD	16 / 20 ns	10	14	14	10	14	14
29	Minimum RAS to CAS delay tRCD	20 ns	14	14	14	14	14	14
30	Minimum RAS pulse width tRAS	50 / 60 ns	32	32	3C	32	32	3C
31	Module Bank Density (per bank)	256 MByte	40	40	40	40	40	40
32	SDRAM input setup time	2 ns	20	20	20	20	20	20
33	SDRAM input hold time	1 ns	10	10	10	10	10	10
34	SDRAM data input setup time	2 ns	20	20	20	20	20	20
35	SDRAM data input hold time	1 ns	10	10	10	10	10	10
62-61	Superset information (may be used in future)		FF	FF	FF	FF	FF	FF
62	SPD Revision	Revision 1.2	12	12	12	12	12	12
63	Checksum for bytes 0 - 62		99	ED	11	AB	FF	F3
64- 125	Manufacturers information		XX	XX	XX	XX	XX	XX
126	Frequency Specification	100 MHz	64	64	64	64	64	64
127	100 MHz support details		AF	AD	AD	AF	AD	AD
128+	Unused storage locations		FF	FF	FF	FF	FF	FF


SPD-Table for 256Mbit SDRAM based PC100 Modules:

Byte#	Description	SPD Entry Value			H	ex		
			64Mx64	64Mx64	64Mx64	64Mx72	64Mx72	64Mx72
			two	two	two	two	two	two
			bank	bank	bank	bank	bank	bank
			-8	-8A	-8B	-8	-8A	-8B
0	Number of SPD bytes	128	80	80	80	80	80	80
1	Total bytes in Serial PD	256	08	08	08	08	08	08
2	Memory Type	SDRAM	04	04	04	04	04	04
3	Number of Row Addresses (without BS bits)	13	0D	0D	0D	0D	0D	0D
4	Number of Column Addresses (for 32Mx8 SDRAMs)	10	0A	0A	0A	0A	0A	0A
5	Number of DIMM Banks	2	02	02	02	02	02	02
6	Module Data Width	64 / 72	40	40	40	48	48	48
7	Module Data Width (cont'd)	0	00	00	00	00	00	00
8	Module Interface Levels	LVTTL	01	01	01	01	01	01
9	SDRAM Cycle Time at CL=3	10.0 ns	A0	A0	A0	A0	A0	A0
10	SDRAM Access time from Clock at CL=3	6.0 ns	60	60	60	60	60	60
11	Dimm Config	none / ECC	00	00	00	02	02	02
12	Refresh Rate/Type	Self-Refresh, 7.8 μs	82	82	82	82	82	82
13	SDRAM width, Primary	x8	08	08	08	08	08	08
14	Error Checking SDRAM data width	n/a / x8	00	00	00	08	08	08
15	Minimum clock delay for back-to-back random column address	t _{ccd} = 1 CLK	01	01	01	01	01	01
16	Burst Length supported	1, 2, 4 & 8	0F	0F	0F	0F	0F	0F
17	Number of SDRAM banks	4	04	04	04	04	04	04
18	Supported CAS Latencies	CAS latency = 2 & 3	06	06	06	06	06	06
19	CS Latencies	CS latency = 0	01	01	01	01	01	01
20	WE Latencies	Write lat- ency = 0	01	01	01	01	01	01
21	SDRAM DIMM module attributes	non buffered/ non reg.	00	00	00	00	00	00
22	SDRAM Device Attributes :General	Vcc tol +/- 10%	0E	0E	0E	0E	0E	0E
23	Min. Clock Cycle Time at CAS Latency = 2	10.0 / 15.0 ns	A0	F0	F0	A0	F0	F0
24	Max. data access time from Clock for CL=2	6.0 / 7.0 ns	60	60	70	60	60	70
25	Minimum Clock Cycle Time at CL = 1	not suppor- ted	FF	FF	FF	FF	FF	FF

Byte#	Description	SPD Entry Value	Hex							
			64Mx64	64Mx64	64Mx64	64Mx72	64Mx72	64Mx72		
			two	two	two	two	two	two		
			bank	bank	bank	bank	bank	bank		
			-8	-8A	-8B	-8	-8A	-8B		
26	Maximum Data Access Time from Clock at CL=1	not suppor- ted	FF	FF	FF	FF	FF	FF		
27	Minimum Row Precharge Time	20 / 30 ns	14	14	1E	14	14	1E		
28	Minimum Row Active to Row Active delay tRRD	16 / 20 ns	10	14	14	10	14	14		
29	Minimum RAS to CAS delay tRCD	20 ns	14	14	14	14	14	14		
30	Minimum RAS pulse width tRAS	50 / 60 ns	32	32	3C	32	32	3C		
31	Module Bank Density (per bank)	256 MByte	40	40	40	40	40	40		
32	SDRAM input setup time	2 ns	20	20	20	20	20	20		
33	SDRAM input hold time	1 ns	10	10	10	10	10	10		
34	SDRAM data input setup time	2 ns	20	20	20	20	20	20		
35	SDRAM data input hold time	1 ns	10	10	10	10	10	10		
36-61	Superset information (may be used in future)		FF	FF	FF	FF	FF	FF		
62	SPD Revision	Revision 1.2	12	12	12	12	12	12		
63	Checksum for bytes 0 - 62		9A	EE	E2	AC	00	24		
64- 125	Manufacturers information		XX	XX	XX	XX	XX	XX		
126	Frequency Specification	100 MHz	64	64	64	64	64	64		
127	100 MHz support details		FF	FD	FD	FF	FD	FD		
128+	Unused storage locations		FF	FF	FF	FF	FF	FF		

