APPROVALS

- UL recognised, File No. E91231

DESCRIPTION

These diode-transistor optocouplers use a light emitting diode and an integrated photon detector to provide 2500 Volts $_{\text {RMS }}$ electrical isolation between input and output. Seperate connection for the photodiode bias and output transistor collector improve the speed up to a hundred times that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

FEATURES

- High speed - 1 MBits/s
- High Common Mode Transient Immunity $10000 \mathrm{~V} / \mu$ s typical
- Pin 7 not connected to give enhanced Noise Immunity
- TTL Compatible
- 2 MHz Bandwidth
- Open Collector Output
- $2500 \mathrm{~V}_{\text {rms }}$ Withstand Test Voltage, 1 Min
- Options :-

10 mm lead spread - add G after part no. Surface mount - add SM after part no.
Tape\&reel - add SMT\&R after part no.

- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Line receivers
- Pulse transformer replacement
- Wide bandwidth analog coupling
- Output interface to CMOS-LSTTL-TTL

ABSOLUTE MAXIMUM RATINGS ($25^{\circ} \mathrm{C}$ unless otherwise specified)

```
Storage Temperature
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Operating Temperature
``` \(\qquad\)
``` \(-55^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) Lead Soldering Temperature
( \(1 / 16\) inch ( 1.6 mm ) from case for 10 secs ) \(260^{\circ} \mathrm{C}\)
```


INPUT DIODE

Average Forward Current $25 \mathrm{~mA}(1)$ Peak Forward Current (50% duty cycle, 1 ms pulse width) $50 \mathrm{~mA}(2)$ Peak Transient Current (equal to or less than $1 \mu \mathrm{~s} \overline{\text { P.W., } 300 \mathrm{pps})}$ 1.0 A Reverse Voltage Power Dissipation 5 V	$45 \mathrm{~mW}(3)$

$25 m A(1)$
Peak Forward Current 50mA (2)
(50% duty cycle, 1 ms pulse width)
(equal to or less than $1 \mu \mathrm{~s} \overline{\mathrm{P} . \mathrm{W} ., 300 \mathrm{pps})}$
Reverse Voltage 45 mW (3)

DETECTOR

Average Output Current	8 mA
Peak Output Current	16 mA
Supply and Output Voltage	-0.5 to +15 V
Power Dissipation	$100 \mathrm{~mW}(4)$

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West,
Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD
Tel: (01429) 863609 Fax :(01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA
Tel:(214)495-0755 Fax:(214)495-0901 e-mail info@isocom.com http://www.isocom.com

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Unless otherwise noted)

PARAMETER	SYM	MIN	TYP*	MAX	UNITS	TEST CONDITION
Current Transfer Ratio (note 5)	CTR	19	24		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
		15	25		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$
Logic Low Output Voltage	$\mathrm{V}_{\text {oL }}$		0.1	0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
Logic High Output Current	I_{OH}		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	500 1 50	nA $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$
Logic Low Supply Current	$\mathrm{I}_{\text {CLL }}$			40	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\text { open } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$
Logic High Supply Current	$\mathrm{I}_{\text {CCH }}$		0.02	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { open } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { open } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$
Input Reverse Voltage	V_{R}	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$
Input-output Isolation Voltage	$\mathrm{V}_{\text {ISO }}$	2500	5000		$\mathrm{V}_{\text {RMS }}$	R.H.equal to or less than $50 \%, \mathrm{t}=1 \mathrm{~min} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Resistance (Input to Output)	R_{10}		10^{12}		Ω	$\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$ dc (note 6)
Capacitance (Input to Output)	C_{10}		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$ (note 6)
Transistor DC Current Gain	H_{FE}		150			$\mathrm{V}_{\mathrm{o}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=3 \mathrm{~mA}$

[^0]SWITCHING SPECIFICATIONS AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\left(\mathrm{V}_{\mathrm{CC}}=\mathbf{5 V}, \mathrm{I}_{\mathrm{F}}=\mathbf{1 6 m A}\right.$ Unless otherwise noted $)$

PARAMETER	SYM	DEVICE	MIN	TYP	MAX	UNITS	TEST CONDITION
Propagation Delay Time To Logic Low at Output (fig 1)	$\mathrm{t}_{\text {PHL }}$			0.2	0.8	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$, (note 8)
Propagation Delay Time To Logic High at Output (fig 1)	$\mathrm{t}_{\text {PLH }}$			0.2	0.8	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$, (note 8)
Common Mode Transient Immunity at Logic High Level Output (fig 2)	CM_{H}			10000		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,\left(\text { note } 7,8{ }^{2}\right) \end{aligned}$
Common Mode Transient Immunity at Logic Low Level Output (fig 2)	CM_{L}			-10000		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega,(\text { note } 7,8) \end{aligned}$
Bandwidth	BW			2		MHz	$\mathrm{R}_{\mathrm{L}}=100 \Omega$, (note 9)

NOTES:-

1. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $1.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F} times 100%.
6. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins 5,6,7 and 8 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode pulse V_{CM} to assure that the output will remain in a Logic High state (i.e. $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM} to assure that the output will remain in Logic Low state (i.e. $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
8. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
9. The frequency at which the a.c. output voltage is 3 dB below the low frequency asymptote.

FIG. 1 SWITCHING TEST CIRCUIT

FIG. 2 TEST CIRCUIT FOR TRANSIENT IMMUNITY AND TYPICAL WAVEFORMS

Normalized Current Transfer Ratio vs. Ambient Temperature

Logic High Output Current vs. Ambient Temperature

Normalized Propagation Delay vs. Ambient Temperature

[^0]: * All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

