

Integrated Circuit Systems, Inc.

Advance Information

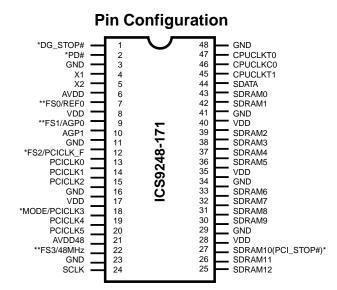
AMD - K7[™] System Clock Chip

Recommended Application:

ALI 1647 style chipset

Output Features:

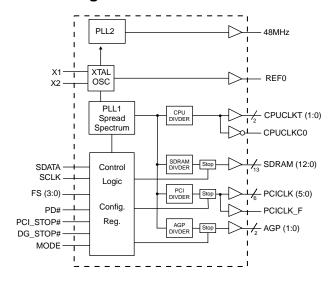
- 1 Differential pair open drain CPU clocks
- 1 Single-ended open drain CPU clock
- 13 SDRAM @ 3.3V
- 7 PCI @3.3V
- 2 AGP @ 3.3V
- 1 48MHz. @3.3V
- 1 REF @3.3V, (selectable strength) through I^2C


Features:

- Up to 147MHz frequency support
- Support power management: DG stop, PCI stop and Power down Mode from I²C programming.
- Spread spectrum for EMI control (0 to -0.5% down spread, \pm 0.25% center spread).
- Uses external 14.318MHz crystal

Skew Specifications:

- CPUT CPUC: <250ps
- PCI PCI: <500ps
- CPU SDRAM: <350ps
- SDRAM SDRAM: <250ps
- AGP AGP: <250ps
- PCI AGP: <350ps
- CPU PCI: <3ns


Block Diagram

48-Pin 300mil SSOP & 240mil TSSOP package

Notes:

- REF0 could be 1X or 2X strength controlled by I²C. * Internal Pull-up Resistor of 120K to VDD
- ** Internal pull-down of 120K to GND.

Functionality

FS3	FS2	FS1	FS0	CPU	SDRAM
0	0	0	0	66.66	66.66
0	0	0	1	66.66	100.00
0	0	1	0	100.00	66.66
0	0	1	1	100.00	100.00
0	1	0	0	100.00	133.33
0	1	0	1	120.00	120.00
0	1	1	0	133.33	100.00
0	1	1	1	133.33	133.33
1	0	0	0	90.00	90.00
1	0	0	1	101.00	101.00
1	0	1	0	100.00	66.66
1	0	1	1	100.00	100.00
1	1	0	0	100.00	133.33
0	1	0	1	126.00	126.00
1	1	1	0	133.33	100.00
1	1	1	1	133.33	133.33

Power Groups

AVDD = Xtal, Core PLL AVDD48 = 48MHz, Fixed PLL

> ADVANCE INFORMATION documents contain information on products in the formative or design phase development. Characteristic data and other specifications are design goals. ICS reserves the right to change or discontinue these products without notice.

9248-171 Rev - 12/29/00

Third party brands and names are the property of their respective owners.

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1		INI	DG_STOP halts SDRAM and/or AGP clocks at logic "0" when driven low.
1	DG_STOP# ¹	IN	The stops selection can be programed through I^2C .
2	$PD\#^1$	IN	Asynchronous active low input pin used to power down the device into a low power state. The internal clocks are disabled and the VCO and the crystal are stopped. The latency of the power down will not be greater than 3ms.
4	X1	IN	Crystal input, nominally 14.318MHz.
5	X2	OUT	Crystal output, nominally 14.318MHz.
3, 11, 16, 23, 29, 34, 41, 48	GND	PWR	Ground pins
8, 17, 28, 35, 40	VDD	PWR	Power supply pins, nominal 3.3V
6	AVDD	PWR	Analog power supply pin, nominal 3.3V
7	FS0 ^{2, 3}	IN	Frequency select pin.
7	REF0	OUT	14.318 MHz reference clock.
9	FS1 ^{2, 3}	IN	Frequency select pin.
9	AGP0	OUT	AGP outputs defined as 2X PCI. These may not be stopped.
10	AGP1	OUT	AGP outputs defined as 2X PCI. These may not be stopped.
12	PCICLK_F	OUT	Free running PCICLK not stoped by PCI_STOP#
12	FS2 ^{1, 3}	IN	Frequency select pin.
20, 19, 15, 14, 13	PCICLK (5:4) (2:0)	OUT	PCI clock outputs.
1.0	PCICLK3	OUT	PCI clock output.
18	MODE ^{1, 3}	IN	Function select pin, 1=Desktop Mode, 0=Mobile Mode.
21	AVDD48	PWR	Analog power supply pin, nominal 3.3V
22	FS3 ^{2, 3}	IN	Frequency select pin.
22	48MHz	OUT	48MHz output clock
24	SCLK	IN	Clock input of I ² C input, 5V tolerant input
27	PCI_STOP# ¹	IN	Stops all PCICLKs besides the PCICLK_F clocks at logic 0 level, when input low
	SDRAM10	OUT	SDRAM clock output.
25, 26, 30, 31, 32, 33, 36, 37, 38, 39, 42, 43	SDRAM (12:11, 9:0)	OUT	SDRAM clock outputs.
44	SDATA	I/O	Data pin for I ² C circuitry 5V tolerant
45, 47	CPUCLKT (1:0)	OUT	"True" clocks of differential pair CPU outputs. These open drain outputs need an external 1.5V pull-up.
46	CPUCLKC0	OUT	"Complementory" clocks of differential pair CPU outputs. This open drain output need an external 1.5V pull-up.

Notes:

Internal Pull-up Resistor of 120K to 3.3V on indicated inputs Internal pull-down resistor of 120K to GND. 1:

2:

3: Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor to program logic Hi to VDD or GND for logic low.

General Description

The **ICS9248-171** is a main clock synthesizer chip for AMD-K7 based systems with ALI 1647 style chipset. This provides all clocks required for such a system.

Spread spectrum may be enabled through I^2C programming. Spread spectrum typically reduces system EMI by 8dB to 10dB. This simplifies EMI qualification without resorting to board design iterations or costly shielding. The ICS9248-171 employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations.

Serial programming I²C interface allows changing functions, stop clock programming and frequency selection.

MODE, Pin 18 (Latched Input)	Pin 27
0	PCI_STOP# (Input)
1	SDRAM10 (Output)

Mode Pin - Power Management Input Control

Serial Configuration Command Bitmap Byte0: Functionality and Frequency Select Register (default = 0)

Bit							Descriptio	n			PWD
	Bit2	FS3 Bit7	FS2 Bit6	FS1 Bit5	FS0 Bit4	CPUCLK (MHz)	SDRAM (MHz)	PCICLK (MHz)	AGP (MHz)	Spread Precentage	
	0	0	0	0	0	66.66	66.66	33.33	66.66	+/- 0.25% Center Spread	
	0	0	0	0	1	66.66	100.00	33.33	66.66	+/- 0.25% Center Spread	
	0	0	0	1	0	100.00	66.66	33.33	66.66	+/- 0.25% Center Spread	
	0	0	0	1	1	100.00	100.00	33.33	66.66	+/- 0.25% Center Spread	
	0	0	1	0	0	100.00	133.33	33.33	66.66	+/- 0.25% Center Spread	
	0	0	1	0	1	120.00	120.00	30.00	60.00	+/- 0.25% Center Spread	
	0	0	1	1	0	133.33	100.00	33.33	66.66	+/- 0.25% Center Spread	
	0	0	1	1	1	133.33	133.33	33.33	66.66	+/- 0.25% Center Spread	
	0	1	0	0	0	90.00	90.00	30.00	60.00	+/- 0.25% Center Spread	
	0	1	0	0	1	101.00	101.00	33.67	67.33	+/- 0.25% Center Spread	
	0	1	0	1	0	100.00	66.66	33.33	66.66	0 to -0.5% Down Spread	
	0	1	0	1	1	100.00	100.00	33.33	66.66	0 to -0.5% Down Spread	
	0	1	1	0	0	100.00	133.33	33.33	66.66	0 to -0.5% Down Spread	
	0	0	1	0	1	126.00	126.00	31.50	63.00	+/- 0.25% Center Spread	
Bit 2.	0	1	1	1	0	133.33	100.00	33.33	66.66	0 to -0.5% Down Spread	00000
Bit 7:4	0	1	1	1	1	133.33	133.33	33.33	66.66	0 to -0.5% Down Spread	Note1
	1	0	0	0	0	102.00	102.00	34.00	67.99	+/- 0.25% Center Spread	
	1	0	0	0	1	102.00	136.00	34.00	67.99	+/- 0.25% Center Spread	
	1	0	0	1	0	136.00	102.00	34.00	67.99	+/- 0.25% Center Spread	
	1	0	0	1	1	136.00	136.00	34.00	67.99	+/- 0.25% Center Spread	
	1	0	1	0	0	103.00	103.00	34.33	68.66	+/- 0.25% Center Spread	
	1	0	1	0	1	103.00	137.33	34.33	68.66	+/- 0.25% Center Spread	
	1	0	1	1	0	137.33	103.00	34.33	68.66	+/- 0.25% Center Spread	
	1	0	1	1	1	137.33	137.33	34.33	68.66	+/- 0.25% Center Spread	
	1	1	0	0	0	105.00	105.00	35.00	69.99	+/- 0.25% Center Spread	
	1	1	0	0	1	105.00	140.00	35.00	69.99	+/- 0.25% Center Spread	
	1	1	0	1	0	140.00	140.00	35.00	69.99	+/- 0.25% Center Spread	
	1	1	0	1	1	107.00	107.00	35.66	71.33	+/- 0.25% Center Spread	
	1	1	1	0	0	107.00	142.66	35.66	71.33	+/- 0.25% Center Spread	
	1	1	1	0	1	142.66	142.66	35.66	71.33	+/- 0.25% Center Spread	
	1	1	1	1	0	110.00	110.00	36.66	73.33	+/- 0.25% Center Spread	
	1	1	1	1	1	146.66	146.66	36.66	73.33	+/- 0.25% Center Spread	
Bit 3	0 - Frequency is selected by hardware select, Latched Inputs 1 - Frequency is selected by Bit 2, 7:4								0		
Bit 1	0 - Normal 1 - Spread Spectrum Enabled								0		
Bit 0	0 - Ru 1- Tris	inning state all	output	ts							0

Note1: Default at power-up will be for latched logic inputs to define frequency, as displayed by Bit 3. The I²C readback of the power up default indicates the revision ID in bits 2, 7:4 as shown.

Advance Information

Byte 1: CPU, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	X	FS3#
Bit 6	10	1	AGP1
Bit 5	9	1	AGP0
Bit 4	22	1	48MHz
Bit 3	43	1	SDRAM0
Bit 2	7	1	REF0 - 1X or 2X default = $1=1X$
Bit 1	47, 46	1	CPUCLKT0, CPUCLKC0
Bit 0	45	1	CPUCLKT1

Byte 3: SDRAM, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	FS0#
Bit 6	-	Х	FS1#
Bit 5	-	X	FS2#
Bit 4	31	1	SDRAM8
Bit 3	30	1	SDRAM9
Bit 2	27	1	SDRAM10
Bit 1	26	1	SDRAM11
Bit 0	25	1	SDRAM12

Byte 5: Peripheral , Active/Inactive Reg	gister
(1 = enable, 0 = disable)	

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	1	Reserved
Bit 6	-	1	Reserved
Bit 5	-	1	Reserved
Bit 4	-	1	Reserved
Bit 3	-	1	Reserved
Bit 2	-	1	Reserved
Bit 1	-	1	Reserved
Bit 0	42	1	SDRAM1

Notes:

- 1. Inactive means outputs are held LOW and are disabled from switching.
- 2. Latched Frequency Selects (FS#) will be inverted logic load of the input frequency select pin conditions.

Byte 2: PCI, Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	Х	MODE#
Bit 6	20	1	PCICLK5
Bit 5	19	1	PCICLK4
Bit 4	18	1	PCICLK3
Bit 3	15	1	PCICLK2
Bit 2	14	1	PCICLK1
Bit 1	13	1	PCICLK0
Bit 0	12	1	PCICLK_F

Byte 4: Reserved , Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit 7	-	0	Bit (7:6) = 01 DG_STOP# will stop SDRAM & AGP clocks Bit (7:6) = 10 DG_STOP# will stop
Bit 6	-	1	SDRAM clocks only Bit (7:6) = 11 DG_STOP# will stop AGP clocks only
Bit 5	39	1	SDRAM2
Bit 4	38	1	SDRAM3
Bit 3	37	1	SDRAM4
Bit 2	36	1	SDRAM5
Bit 1	33	1	SDRAM6
Bit 0	32	1	SDRAM7

Byte 6: Peripheral , Active/Inactive Register (1= enable, 0 = disable)

BIT	PIN#	PWD	DESCRIPTION
Bit7	-	0	Reserved (Note)
Bit6	-	0	Reserved (Note)
Bit5	-	0	Reserved (Note)
Bit4	-	0	Reserved (Note)
Bit3	-	0	Reserved (Note)
Bit2	-	1	Reserved (Note)
Bit1	-	1	Reserved (Note)
Bit0	-	1	Reserved (Note)

Note: Don't write into this register, writing into this register can cause malfunction

Advance Information

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V
Ambient Operating Temperature	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature	-65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$I_A = 0 = 70$ C, Supply	voltage v_{DD} –	$3.5 \text{ V} \pm 7.5\%$ (unless otherwise stated)		× /</th <th></th> <th></th>		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V _{IH}		2	1	V _{DD} +0.3	V
Input Low Voltage	V _{IL}		V _{ss} -0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	$\mathbf{\nabla}$		5	μA
Input Low Current	I _{IL1}	$V_{IN} = 0$ V; Inputs with no pull-up resistors	-5			μA
Input Low Current	I _{IL2}	$V_{IN} = 0$ V; Inputs with pull-up resistors	-200			μA
Operating	I _{DD3.30P66}	$C_L = 0 \text{ pF}; \text{ Select } @ 66 \text{MHz}$				
Supply Current	I _{DD3.30P100}	$C_L = 0 \text{ pF}; \text{ Select @ 100MHz}$			180	mA
	I _{DD3.30P133}	$C_L = 0 \text{ pF}$; Select @ 133MHz				
Power Down	PD				600	μA
Input frequency	F _i	$V_{\rm DD} = 3.3 \text{ V};$	12	14.318	16	MHz
Innut Consoitonos ¹	C _{IN}	Logic Inputs			5	pF
Input Capacitance ¹	C _{INX}	X1 & X2 pins	27		45	pF
Clk Stabilization ¹	T _{STAB}	From $V_{DD} = 3.3$ V to 1% target Freq.			3	ms
c1 1	t _{CPU-SDRAM}	VI COM			350	ps
Skew ¹	t _{CPU-PCI}	$V_{\rm T} = 50\%$			3	ns

 $T_{A} = 0 - 70^{\circ}$ C: Supply Voltage $V_{DD} = 3.3$ V +/-5% (unless otherwise stated)

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPUCLK (Open Drain) $T_A = 0 - 70^{\circ}$ C; $V_{DD} = 3.3$ V +/-5%; $C_L = 20$ pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Impedance	Z ₀	$V_O = V_X$				Ω
Output High Voltage	V _{OH2B}	Termination to $V_{pull-up(external)}$	1		1.2	V
Output Low Voltage	V _{OL2B}	Termination to V _{pull-up(external)}	\bigcirc		0.4	v
Output Low Current	I _{OL2B}	$V_{OL} = 0.3 V$	18	\bigcirc		mA
Rise Time ¹	t _{r2B}	$V_{OL} = 0.3 \text{ V}, V_{OH} = 1.2 \text{ V}$		NY -	0.9	ns
Fall Time ¹	t _{f2B}	$V_{OH} = 1.2 \text{ V}, V_{OL} = 0.3 \text{ V}$			0.9	ns
Differential voltage-AC ¹	V _{DIF}	Note 2	0.4		$V_{pullup(external)} + 0.6$	V
Differential voltage-DC ¹	V _{DIF}	Note 2	0.2		Vpullup(external) + 0.6	V
Differential Crossover Voltage ¹	Vx	Note 3	550		1100	mV
Duty Cycle ¹	d _{t2B}	$V_{\rm T} = 50\%$	45		55	%
Skew ¹	t _{sk2B}	VT = 50%	0°		250	ps
Jitter, Cycle-to-cycle ¹	t _{jcyc-cyc2B}	$V_{\rm T} = V_{\rm X}$		Ý	250	ps
Jitter, Absolute ¹	t _{jabs2B}	VT = 50%	-250		+250	ps
Notes:				•	•	

Notes:

1 - Guaranteed by design, not 100% tested in production.

2 - V_{DIF} specifies the minimum input differential voltages (V_{TR} - V_{CP}) required for switching, where V_{TR} is the "true" input level and V_{CP} is the "complement" input level.

3 - Vpullup_(external) = 1.5V, Min = Vpullup_(external)/2-150mV; Max=(Vpullup_(external)/2)+150mV

Electrical Characteristics - PCICLK

 $T_A = 0 - 70^{\circ} \text{ C}; V_{DD} = 3.3 \text{ V} \pm -5\%; C_L = 30 \text{ pF} \text{ (unless otherwise stated)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.6			V
Output Low Voltage	Vol1	$I_{OL} = 9.4 \text{ mA}$			0.4	V
Output High Current	IOH1	$V_{OH} = 2.0 \text{ V}$		<	-16	mA
Output Low Current	IOL1	$V_{OL} = 0.8 V$	19			mA
Rise Time ¹	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	C		2	ns
Fall Time ¹	t _{fl}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		\mathcal{T}	2	ns
Duty Cycle ¹	dt1	VT = 1.5V	45		55	%
Skew ¹	${T_{sk}}^1$	$V_{\rm T} = 1.5 V$	\mathbb{R}		500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK_F

 $T_A = 0 - 70^{\circ} \text{ C}; V_{DD} = 3.3 \text{ V} + -5\%; C_L = 20 \text{ pF} \text{ (unless otherwise stated)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	Voh1	Іон = -11 mA	2.6			V
Output Low Voltage	VOL1	IoL = 9.4 mA			0.4	V
Output High Current	Іон1	Voh = 2.0 V			-12	mA
Output Low Current	Iol1	$V_{OL} = 0.8 V$	12			mA
Rise Time ¹	tr1	Vol = 0.4 V, Voh = 2.4 V			2	ns
Fall Time ¹	tfl	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$			2	ns
Duty Cycle ¹	dt1	V _T = 50%	45		55	%
Skew ¹ (window)	T _{sk} ¹	VT = 50%			500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48MHz, REF0 $T_A = 0 - 70^{\circ}$ C; $V_{DD} = 3.3$ V +/-5%, $V_{DDL} = 2.5$ V +/-5%; $C_L = 20$ pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	Voh5	Iон = -16 mA	2.4	$\sum D$	0r	V
Output Low Voltage	Vol5	$I_{OL} = 9 \text{ mA}$	1	$\langle \rangle$	0.4	V
Output High Current	Іон5	$V_{OH} = 2.0 V$	\langle		-22	mA
Output Low Current	Iol5	$V_{OL} = 0.8 V$	16	\searrow		mA
Rise Time ¹	tr5	$V_{OL} = 0.4 V, V_{OH} = 2.4 V$		Y	2	ns
Fall Time ¹	tß	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	\bigvee^{ν}		2	ns
Duty Cycle ¹	dt5	V _T = 1.5 V	45		55	%
Jitter, One Sigma ¹	tj1s5	V _T = 1.5 V			0.5	ns
Jitter, Absolute ¹	tjabs5	V _T = 1.5 V	-1		_1	ns

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - SDRAM (12:0) $T_A = 0 - 70^{\circ}$ C; $V_{DD} = 3.3$ V +/-5%, $C_L = 20$ pF (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH3}	$I_{OH} = -11 \text{ mA}$	2			V
Output Low Voltage	V _{OL3}	$I_{OL} = 11 \text{ mA}$			0.4	V
Output High Current	I _{OH3}	V _{OH} = 2.0 V			-12	mA
Output Low Current	I _{OL3}	V _{OL} = 0.8 V	12			mA
Rise Time ¹	T_{r3}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$			2.2	ns
Fall Time ¹	T_{f3}^{1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$			2.2	ns
Duty Cycle ¹	D_{t3}^{1}	$V_{\rm T} = 50\%$	45		55	%
Skew ¹ (window)	${T_{sk}}^1$	VT = 50%			250	ps

¹Guarenteed by design, not 100% tested in production.

Advance Information

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2_(H)
- ICS clock will *acknowledge*
- Controller (host) sends a dummy command code
- ICS clock will *acknowledge*
- Controller (host) sends a dummy byte count
- ICS clock will *acknowledge*
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will *acknowledge* each byte *one at a time*.
- Controller (host) sends a Stop bit

How to Write:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit						
Address						
D2 _(H)						
	ACK					
Dummy Command Code						
	ACK					
Dummy Byte Count						
	ACK					
Byte 0						
	ACK					
Byte 1						
	ACK					
Byte 2						
	ACK					
Byte 3						
	ACK					
Byte 4						
	ACK					
Byte 5						
	ACK					
Byte 6						
	ACK					
Byte 7						
	ACK					
Stop Bit						

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the *byte count*
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 7
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:					
Controller (Host)	ICS (Slave/Receiver)				
Start Bit					
Address					
D3(H)					
	ACK				
	Byte Count				
ACK					
	Byte 0				
ACK					
	Byte 1				
ACK					
	Byte 2				
ACK					
	Byte 3				
ACK					
	Byte 4				
ACK					
1.01/	Byte 5				
ACK					
A 01/	Byte 6				
ACK					
0. 5.	Byte 7				
Stop Bit					

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I^2C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) on the ICS9248-171 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

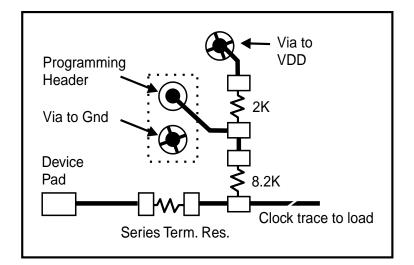
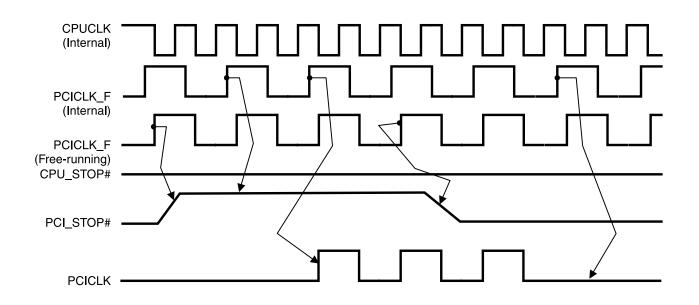
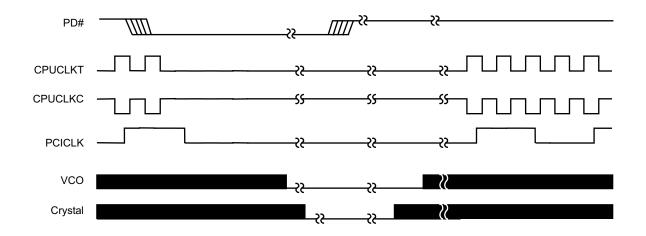



Fig. 1

PCI_STOP# Timing Diagram

PCI_STOP# is an asynchronous input to the **ICS9248-171**. It is used to turn off the PCICLK clocks for low power operation. PCI_STOP# is synchronized by the **ICS9248-171** internally. The minimum that the PCICLK clocks are enabled (PCI_STOP# high pulse) is at least 10 PCICLK clocks. PCICLK clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK clock on latency cycles are only one rising PCICLK clock off latency is one PCICLK clock.

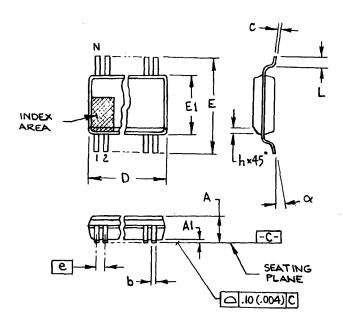
Notes:


- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248-171 device.)
- 2. PCI_STOP# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS9248-171.
- 3. All other clocks continue to run undisturbed.
- 4. CPU_STOP# is shown in a high (true) state.

PD# Timing Diagram

The power down selection is used to put the part into a very low power state without turning off the power to the part. PD# is an asynchronous active low input. This signal needs to be synchronized internal to the device prior to powering down the clock synthesizer.

Internal clocks are not running after the device is put in power down. When PD# is active low all clocks need to be driven to a low value and held prior to turning off the VCOs and crystal. The power up latency needs to be less than 3 mS. The power down latency should be as short as possible but conforming to the sequence requirements shown below. PCI_STOP# and CPU_STOP# are considered to be don't cares during the power down operations. The REF and 48MHz clocks are expected to be stopped in the LOW state as soon as possible. Due to the state of the internal logic, stopping and holding the REF clock outputs in the LOW state may require more than one clock cycle to complete.

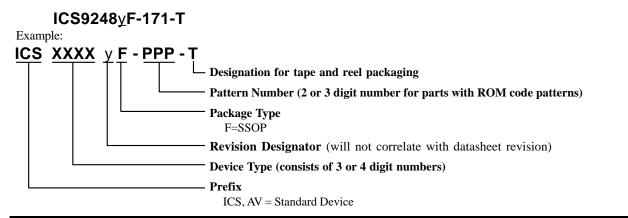


Notes:

- 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248-171 device).
- 2. As shown, the outputs Stop Low on the next falling edge after PD# goes low.
- 3. PD# is an asynchronous input and metastable conditions may exist. This signal is synchronized inside this part.
- 4. The shaded sections on the VCO and the Crystal signals indicate an active clock.
- 5. Diagrams shown with respect to 133MHz. Similar operation when CPU is 100MHz.

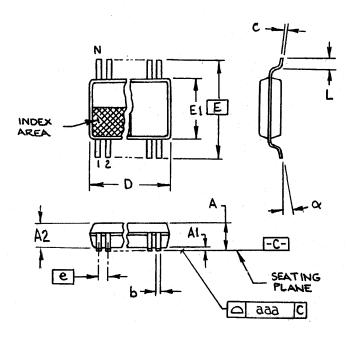
Advance Information

300 mil SSOP


SYMBOL	In Millin COMMON D		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
Α	2.413	2.794	.095	.110
A1	0.203	0.406	.008	.016
b	0.203	0.343	.008	.0135
С	0.127	0.254	.005	.010
D	SEE VARIATIONS		SEE VARIATIONS	
E	10.033	10.668	.395	.420
E1	7.391	7.595	.291	.299
е	0.635 BASIC		0.025	BASIC
h	0.381	0.635	.015	.025
L	0.508	1.016	.020	.040
N	SEEVAR	SEE VARIATIONS SEE VARIAT		RIATIONS
α	0°	8°	0°	8°

VARIATIONS

N	D m		D (inch)	
IN	MIN	MAX	MIN	MAX
28	9.398	9.652	.370	.380
34	11.303	11.557	.445	.455
48	15.748	16.002	.620	.630
56	18.288	18.542	.720	.730
64	20.828	21.082	.820	.830
			JEDEC MO-118	6/1/00


DOC#10-0034 REVB

Ordering Information

Advance Information

6.10 mm. Body, 0.50 mm. pitch TSSOP (240 mil) (0.020 mil)

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSION	
	MIN	MAX	MIN	MAX
А	-	1.20	-	.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.17	0.27	.007	.011
С	0.09	0.20	.0035	.008
D	SEE VAR	IATIONS	SEE VAR	RIATIONS
E	8.10 BASIC		0.3	319
E1	6.00	6.20	.236	.244
е	0.50	BASIC	0.020	BASIC
L	0.45	0.75	.018	.30
Ν	SEE VAR	IATIONS	TIONS SEE VARIATIONS	
α	0°	8°	0°	8°
aaa	-	0.10	-	.004

VARIATIONS

N D		חm.	D (ii	nch)
IN	MIN	MAX	MIN	MAX
28	7.70	7.90	.303	.311
36	9.60	9.80	.378	.386
40	10.90	11.10	.429	.437
44	10.90	11.10	.429	.437
48	12.40	12.60	.488	.496
56	13.90	14.10	.547	.555
64	16.90	17.10	.665	.673
			MO-153 JEDEC	7/6/00 Rev B

Doc.# 10-0039

Ordering Information

ICS9248yG-171-T Example: ICS XXXX y G - PPP - T Pattern Number (2 or 3 digit number for parts with ROM code patterns) Package Type G=TSSOP Revision Designator (will not correlate with datasheet revision) Device Type (consists of 3 or 4 digit numbers) Prefix ICS, AV = Standard Device