Description

The ICX262AQ is a diagonal 8.933 mm (Type 1/1.8) interline CCD solid-state image sensor with a square pixel array and 3.24 M effective pixels. Frame readout allows all pixels' signals to be output independently within approximately $1 / 4.28$ second.
Also, number of vertical pixels decimation allows output of 30 frames per second in high frame rate readout mode.
R, G, B primary color mosaic filters are used as the color filters, and at the same time high sensitivity and low dark current are achieved through the adoption of Super HAD CCD technology.
This chip is suitable for applications such as electronic still cameras, etc.

Features

- Supports frame readout
- High horizontal and vertical resolution
- Supports high frame rate readout mode: 30 frames/s,

AF1 mode: 60 frames/s, 50 frames $/ \mathrm{s}$,
AF2 mode: 120 frames/s, 100 frames/s

- Square pixel
- Horizontal drive frequency: 18 MHz
- No voltage adjustments (reset gate and substrate bias are not adjusted.)
- R, G, B primary color mosaic filters on chip
- High sensitivity, low dark current
- Continuous variable-speed shutter

- Excellent anti-blooming characteristics

Optical black position
(Top View)

- Exit pupil distance recommended range -20 to -100 mm
- 20-pin high-precision plastic package

Device Structure

- Interline CCD image sensor
- Total number of pixels:
- Number of effective pixels:
- Number of active pixels:
$2140(\mathrm{H}) \times 1560(\mathrm{~V})$ approx. 3.34M pixels $2088(\mathrm{H}) \times 1550(\mathrm{~V})$ approx. 3.24 M pixels
- Number of recommended record pixels: $2080(\mathrm{H}) \times 1542(\mathrm{~V})$ approx. 3.21 M pixels diagonal 8.933 mm $2048(\mathrm{H}) \times 1536(\mathrm{~V})$ approx. 3.15 M pixels diagonal 8.832 mm aspect ratio $4: 3$
- Chip size:
- Unit cell size:
- Optical black:
- Number of dummy bits:
- Substrate material:
$8.10 \mathrm{~mm}(\mathrm{H}) \times 6.64 \mathrm{~mm}(\mathrm{~V})$
$3.45 \mu \mathrm{~m}(\mathrm{H}) \times 3.45 \mu \mathrm{~m}(\mathrm{~V})$
Horizontal (H) direction: Front 4 pixels, rear 48 pixels Vertical (V) direction: Front 8 pixels, rear 2 pixels Horizontal 28
Vertical 1 (even fields only)
Silicon

Super HAD CCD тм $^{\text {т }}$

*Super HAD CCD is a registered trademark of Sony Corporation. Super HAD CCD is a CCD that drastically improves sensitivity by introducing newly developed semiconductor technology by Sony Corporation into Sony's high-performance HAD (Hole-Accumulation Diode) sensor

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

(Top View)

Note) \square Photo sensor

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	V $\phi 4$	Vertical register transfer clock	11	VDD	Supply voltage
2	Vф3A	Vertical register transfer clock	12	фRG	Reset gate clock
3	Vф3B	Vertical register transfer clock	13	H\$2	Horizontal register transfer clock
4	Vф2	Vertical register transfer clock	14	H $\phi 1$	Horizontal register transfer clock
5	Vф1A	Vertical register transfer clock	15	GND	GND
6	Vф1B	Vertical register transfer clock	16	$\phi S U B$	Substrate clock
7	TEST	Test pin*1	17	CsUB	Substrate bias*2
8	TEST	Test pin*1	18	VL	Protective transistor bias
9	GND	GND	19	H $\phi 1$	Horizontal register transfer clock
10	Vout	Signal output	20	H\$2	Horizontal register transfer clock

*1 Leave this pin open.
${ }^{* 2}$ DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance of $0.1 \mu \mathrm{~F}$.

Absolute Maximum Ratings

Item		Ratings	Unit	Remarks
Against ϕ SUB	Vdd, Vout, ϕ RG - ϕ SUB	-40 to +12	V	
		-50 to +15	V	
		-50 to +0.3	V	
	H ϕ_{1}, H ϕ_{2}, GND - ϕ SUB	-40 to +0.3	V	
	Csub - ϕ SUB	-25 to	V	
Against ϕ SUB	Vdd, Vout, ϕ RG, Csub - GND	-0.3 to +22	V	
		-10 to +18	V	
	H ϕ_{1}, H ϕ_{2} - GND	-10 to +6.5	V	
Against VL		-0.3 to +28	V	
	V ${ }_{2}$, V ${ }_{\phi 4}, \mathrm{H}_{1}$, H中2, GND - VL	-0.3 to +15	V	
Between input clock pins	Voltage difference between vertical clock input pins	to +15	V	*1
	$\mathrm{H}_{\phi} 1-\mathrm{H} \phi_{2}$	-6.5 to +6.5	V	
	$\mathrm{H}_{\phi 1}, \mathrm{H} \phi_{2}-\mathrm{V} \phi_{4}$	-10 to +16	V	
Storage temperature		-30 to +80	${ }^{\circ} \mathrm{C}$	
Guaranteed temperature of performance		-10 to +60	${ }^{\circ} \mathrm{C}$	
Operating temperature		-10 to +75	${ }^{\circ} \mathrm{C}$	

${ }^{* 1}+24 \mathrm{~V}$ (Max.) when clock width $<10 \mu \mathrm{~s}$, clock duty factor $<0.1 \%$.
+16 V (Max.) is guaranteed for turning on or off power supply.

Bias Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply voltage	VDD	14.55	15.0	15.45	V	
Protective transistor bias	VL	$*_{1}$				
Substrate clock	ϕ SUB	$*_{2}$				
Reset gate clock	ϕ RG	$*_{2}$				

* $_{1}$ VL setting is the VVL voltage of the vertical transfer clock waveform, or the same voltage as the VL power supply for the V driver should be used.
*2 Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD.

DC Characteristics

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Supply current	IDD	2.0	4.5	7.0	mA	

Clock Voltage Conditions

Item	Symbol	Min.	Typ.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	Vvt	14.55	15.0	15.45	V	1	
Vertical transfer clock voltage	VvH1, Vvi2	-0.05	0	0.05	V	2	$\mathrm{VVH}=\left(\mathrm{VVH1}+\mathrm{VVH2}_{2}\right) / 2$
	Vvi3, Vvh4	-0.2	0	0.05	V	2	
	Vvl1, Vvl2, Vvl3, Vvl4	-8.0	-7.5	-7.0	V	2	$\mathrm{VVL}=(\mathrm{VVL3}+\mathrm{VVL4}) / 2$
	$V \phi \vee$	6.8	7.5	8.05	V	2	V ¢ $\mathrm{V}=\mathrm{V}$ vHn -Vv Ln ($\mathrm{n}=1$ to 4)
	Vvi3 - Vvi	-0.25		0.1	V	2	
	VVH4 - Vvi	-0.25		0.1	V	2	
	Vvhe			0.6	V	2	High-level coupling
	Vvhl			0.9	V	2	High-level coupling
	VVLH			0.9	V	2	Low-level coupling
	VVLL			0.5	V	2	Low-level coupling
Horizontal transfer clock voltage	V ${ }_{\text {¢ }}$	4.75	5.0	5.25	V	3	
	VhL	-0.05	0	0.05	V	3	
	VCR	0.8	2.5		V	3	Cross-point voltage
Reset gate clock voltage	VфRG	3.0	3.3	5.25	V	4	
	Vrglh - Vrgll			0.4	V	4	Low-level coupling
	Vrgl - Vrglm			0.5	V	4	Low-level coupling
Substrate clock voltage	Vфsub	21.5	22.5	23.5	V	5	

Clock Equivalent Circuit Constant

Item	Symbol	Min.	Typ.	Max.	Unit	Remarks
Capacitance between vertical transfer clock and GND	CфV1a, CфV3a		1500		pF	
	CфV1в, Cфузв		5600		pF	
	Cфv2, Cфv4		2700		pF	
Capacitance between vertical transfer clocks	CфV1a2, CфV3a4		390		pF	
	CфV1b2, Cфv3в4		470		pF	
	Cфv23a, Cфv41a		120		pF	
	Cфv23в, Cфv41B		180		pF	
	CфV1A3A		39		pF	
	CфV1b3в		220		pF	
	CфV1a3b, CфV1b3a		62		pF	
	CфV24		75		pF	
	CфV1a1b, Cфvзa3b		68		pF	
Capacitance between horizontal transfer clock and GND	Сфн1, Сфн2		36.5		pF	
Capacitance between horizontal transfer clocks	Сфнн		88.5		pF	
Capacitance between reset gate clock and GND	CфRg		8		pF	
Capacitance between substrate clock and GND	Cфsub		1000		pF	
Vertical transfer clock series resistor	$R_{14}, R_{1 b}, R_{2,}$ R3a, R3в, R4		62		Ω	
Vertical transfer clock ground resistor	Rgnd		18		Ω	
Horizontal transfer clock series resistor	Rфн		15		Ω	

Vertical transfer clock equivalent circuit

Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

(1) Readout clock waveform

(2) Vertical transfer clock waveform
V

$$
\begin{aligned}
& \mathrm{VVH}=\left(\mathrm{VVH} 1+\mathrm{VVH}_{2}\right) / 2 \\
& \mathrm{VVL}_{\mathrm{VL}}=\left(\mathrm{VVL3}+\mathrm{VVL4}_{\mathrm{L}} / 2\right. \\
& \mathrm{V}_{\mathrm{VV}}=\mathrm{VVHn}-\mathrm{VVLn}(\mathrm{n}=1 \text { to } 4)
\end{aligned}
$$

(3) Horizontal transfer clock waveform

Cross-point voltage for the $\mathrm{H}_{\phi 1}$ rising side of the horizontal transfer clocks $\mathrm{H}_{\phi 1}$ and $\mathrm{H} \phi 2$ waveforms is Vcr . The overlap period for twh and twl of horizontal transfer clocks $\mathrm{H}_{\phi 1}$ and $\mathrm{H}_{\phi 2}$ is two.

(4) Reset gate clock waveform

Vrglh is the maximum value and Vrgll is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG.
In addition, Vrgl is the average value of Vrglh and Vrgll.

$$
V_{R G L}=\left(V_{R G L H}+V_{R G L L}\right) / 2
$$

Assuming Vrgh is the minimum value during the interval twh, then:

$$
V_{\phi R G}=V_{R G H}-V_{R G L}
$$

Negative overshoot level during the falling edge of RG is VRGLm.

(5) Substrate clock waveform

Clock Switching Characteristics（Horizontal drive frequency： 18 MHz ）

Item		Symbol	twh			twl			tr			tf			Unit	Remarks	
		Min．	Typ．	Max．													
Readout clock			$\mathrm{V}^{\text {T }}$	2.63	2.83						0.5			0.5		$\mu \mathrm{S}$	During readout
Vertical transfer clock		$V_{\phi 1 \mathrm{~A},} \mathrm{~V}_{\phi 1 \mathrm{~B}}$ ， Vф2，Vф3A， Vфзв，Vф4										15		250	ns	When using CXD3400N	
	During imaging	${ }_{\text {H }}^{\phi 1}$	14	19.5		14	19.5			8.5	14		8.5	14	ns	$\mathrm{tf} \geq \mathrm{tr}-2 \mathrm{~ns}$	
		H中2	14	19.5		14	19.5			8.5	14		8.5	14			
	During parallel－seria conversion	H中1		6.67						0.01			0.01		$\mu \mathrm{s}$		
		H中2					5.56			0.01			0.01				
Reset gate clock		ϕ RG	7	10			37			4			5		ns		
Substrate clock		$\phi S U B$	1.7	3.06							0.5			0.5	$\mu \mathrm{S}$	During drain charge	

Item	Symbol	two		Unit	Remarks	
		Min．	Typ．			
Horizontal transfer clock	$\mathrm{H} \phi 1, \mathrm{H} \phi 2$	12	19.5		ns	

Spectral Sensitivity Characteristics（excludes lens characteristics and light source characteristics）

Item		Symbol	Min.	Typ.	Max.	Unit	Measurement method	Remarks	
G sensitivity		Sg	220	270		mV	1	1/30s accumulation	
Sensitivity comparison	R	Rr	0.3	0.45	0.6		1		
	B	Rb	0.35	0.50	0.65		1		
Saturation signal		Vsat	450			mV	2	$\mathrm{Ta}=60^{\circ} \mathrm{C}$	
Smear		Sm		-89.1	-81.2	dB	3	Frame readout mode, ${ }^{* 1, * 2}$	
			-73.6	-65.6	High frame rate readout mode, ${ }^{* 2}$				
Video signal shading			SHg			20	\%	4	Zone 0 and I
					25	Zone 0 to II'			
Dark signal		Vdt			12	mV	5	$\mathrm{Ta}=60^{\circ} \mathrm{C}, 4.28$ frame/s	
Dark signal shading		$\Delta \mathrm{Vdt}$			6	mV	6	$\mathrm{Ta}=60^{\circ} \mathrm{C}, 4.28$ frame $/ \mathrm{s}$, ${ }^{* 3}$	
Line crawl G		Lcg			3.8	\%	7		
Line crawl R		Lcr			3.8	\%	7		
Line crawl B		Lcb			3.8	\%	7		
Lag		Lag			0.5	\%	8		

*1 After closing the mechanical shutter, the smear can be reduced to below the detection limit by performing vertical register sweep operation.
*2 No electronic shutter
*3 Excludes vertical dark signal shading caused by vertical register high-speed transfer.

Zone Definition of Video Signal Shading

Measurement System

Note) Adjust the amplifier gain so that the gain between [$\left.{ }^{*} \mathrm{~A}\right]$ and [$\left.{ }^{*} \mathrm{~B}\right]$, and between [$\left.{ }^{*} \mathrm{~A}\right]$ and [${ }^{*} \mathrm{C}$] equals 1 .

Image Sensor Characteristics Measurement Method

© Measurement conditions

1) In the following measurements, the device drive conditions are at the typical values of the bias and clock voltage conditions, and the frame readout mode is used.
2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of the $\mathrm{Gr} / \mathrm{Gb}$ channel signal output or the R/B channel signal output of the measurement system.
© Color coding of this image sensor \& Readout

Color Coding Diagram

Readout modes

1. Readout modes list

The following readout modes are possible by driving the image sensor at the timing specifications noted in this Data Sheet.

Mode name		Frame rate	Number of output effective lines
Frame readout mode	NTSC mode	4.28 frame $/ \mathrm{s}$	1550 (Odd 775, Even 775)
	PAL mode	4.16 frame $/ \mathrm{s}$	1550 (Odd 775, Even 775)
High frame rate readout mode	NTSC mode	$30 \mathrm{frame} / \mathrm{s}$	258
	PAL mode	$25 \mathrm{frame} / \mathrm{s}$	258
AF1 mode	NTSC mode	$60 \mathrm{frame} / \mathrm{s}$	See Page.12
	PAL mode	$50 \mathrm{frame} / \mathrm{s}$	See Page.12
AF2 mode	NTSC mode	$120 \mathrm{frame} / \mathrm{s}$	See Page.12
	PAL mode	$100 \mathrm{frame} / \mathrm{s}$	See Page.12

2. Frame readout mode, high frame rate readout mode

Frame readout mode		High frame rate readout mode
1st field	2nd field	

Note) Blacked out portions in the diagram indicate pixels which are not read out.

1. Frame readout mode

In this mode, all pixel signals are divided into two fields and output.
All pixel signals are read out independently, making this mode suitable for high resolution image capturing.
2. High frame rate readout mode

Output is performed at 30 frames per second by reading out 2 pixels for every 12 vertical pixels.
The number of output lines is 258 lines.
This readout mode emphasizes processing speed over vertical resolution.

3. AF1 mode, AF2 mode

The AF modes increase the frame rate by cutting out a portion of the picture through high-speed elimination of the top and bottom of the picture in high frame rate readout mode. AF1 allows $1 / 60$ s and $1 / 50$ s output, and AF2 allows $1 / 120$ s and $1 / 100$ s output, so these modes are effective for raising the auto focus (AF) speed. In addition, the cut-out can begin from an optional line by controlling the number of frame shift lines that sweep the top of the picture. The relation between the number of frame shift lines, the output start position and number of output lines is shown in the table below.

	AF1 mode		AF2 mode		
	NTSC	PAL	NTSC	PAL	
Frame rate	$1 / 60 s$	$1 / 50 \mathrm{~s}$	$1 / 120 \mathrm{~s}$	$1 / 100 \mathrm{~s}$	
Output start position on timing chart	26 H	26 H	30 H	30 H	
Number of frame shift lines	$\mathrm{i}=0$ to 255				
Output lines*1	$i+3$ to $\mathrm{i}+108$	$\mathrm{i}+3$ to $\mathrm{i}+134$	$\mathrm{i}+3$ to $\mathrm{i}+38$	$\mathrm{i}+3$ to $\mathrm{i}+47$	

*1 Output line is Up to 258 lines.
The $i+1$ and $i+2$ line signals may be disrupted by elimination of the picture top, so these lines should not be used.

For example, if the picture top is eliminated with $\mathrm{i}=100$ in AF1 mode (NTSC), lines 103 to 208 in high frame rate readout mode are output from 26 H of the timing chart.
If the picture top is eliminated with $\mathrm{i}=160$ in AF1 mode (NTSC), lines 163 to 258 in high frame rate readout mode are output from 26 H of the timing chart.

© Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance: 706cd/m², color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S ($t=1.0 \mathrm{~mm}$) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.
2) Standard imaging condition II:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S ($t=1.0 \mathrm{~mm}$) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.
3) Standard imaging condition III:

Image a light source (color temperature of 3200 K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens (exit pupil distance -33 mm) with CM500S ($\mathrm{t}=1.0 \mathrm{~mm}$) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. G sensitivity, sensitivity comparison

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of $1 / 100$ s, measure the signal outputs ($V_{G r}, V_{G b}, V_{R}$ and V_{B}) at the center of each $G r, G b, R$ and B channel screen, and substitute the values into the following formulas.
$\mathrm{VG}=(\mathrm{VGr}+\mathrm{VGb}) / 2$
$\mathrm{Sg}=\mathrm{VG} \times 100 / 30[\mathrm{mV}]$
$\mathrm{Rr}=\mathrm{V}_{\mathrm{R}} / \mathrm{VG}_{\mathrm{G}}$
$R b=V_{B} / V_{G}$
2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 20 times the intensity with the average value of the $G r$ signal output, 150 mV , measure the minimum values of the $\mathrm{Gr}, \mathrm{Gb}, \mathrm{R}$ and B signal outputs.
3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, first adjust the average value of the Gr signal output to 150 mV . Measure the average values of the Gr signal output, Gb signal output, R signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to 500 times the intensity with the average value of the Gr signal output, 150 mV . After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Vsm [mV]) independent of the Gr , Gb, R and B signal outputs, and substitute the values into the following formula.
$\mathrm{Sm}=20 \times \log \left(\mathrm{Vsm} \div \frac{\mathrm{Gra}+\mathrm{Gba}+\mathrm{Ra}+\mathrm{Ba}}{4} \times \frac{1}{500} \times \frac{1}{10}\right)[\mathrm{dB}](1 / 10 \mathrm{~V}$ method conversion value $)$
4. Video signal shading

Set to standard imaging condition III. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Gr signal output is 150 mV . Then measure the maximum ($\mathrm{Grmax}[\mathrm{mV}]$) and minimum (Grmin [mV]) values of the Gr signal output and substitute the values into the following formula.

$$
\mathrm{SHg}=(\mathrm{Grmax}-\mathrm{Grmin}) / 150 \times 100 \text { [\%] }
$$

5. Dark signal

Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature $60^{\circ} \mathrm{C}$ and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.
6. Dark signal shading

After measuring 5, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula.
$\Delta \mathrm{Vdt}=\mathrm{Vdmax}-\mathrm{Vdmin}[\mathrm{mV}]$
7. Line crawl

Set to standard imaging condition II. Adjusting the luminous intensity so that the average value of the Gr signal output is 150 mV , and then insert R, G and B filters and measure the difference between G signal lines ($\Delta \mathrm{Glr}, \Delta \mathrm{Glg}, \Delta \mathrm{Glb}[\mathrm{mV}]$) as well as the average value of the G signal output (Gar, Gag, Gab). Substitute the values into the following formula.
$\mathrm{Lci}=\frac{\Delta \mathrm{Gli}}{\mathrm{Gai}} \times 100[\%](\mathrm{i}=\mathrm{r}, \mathrm{g}, \mathrm{b})$
8. Lag

Adjust the Gr signal output value generated by strobe light to 150 mV . After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula.
$\operatorname{Lag}=(\mathrm{Vlag} / 150) \times 100[\%]$

Drive Circuit

Notes)

Substrate bias control

1. The saturation signal level decreases when exposure is performed using the mechanical shutter, so control the substrate bias.
2. A saturation signal level equivalent to that for continuous exposure can be assured by connecting a $2.7 \mathrm{k} \Omega$ grounding resistor to the CCD Csub pin.
Drive timing precautions
3. Blooming occurs in modes (high frame rate readout, etc.) that do not use the mechanical shutter, so do not ground the connected $2.7 \mathrm{k} \Omega$ resistor.
4. tf is slow, so the internally generated voltage Vsub may not drop to a sufficiently low level if the substrate bias control signal is not set to high level 40 ms before entering the exposure period and the $2.7 \mathrm{k} \Omega$ resistor connected to the Csub pin is not grounded.
5. The blooming signal generated during exposure in mechanical shutter mode is swept by providing one field or more of idle transfer through vertical register high-speed sweep transfer from the time the mechanical shutter closes until sensor readout is performed. However, note that the VL potential and the $\phi S U B$ pin DC voltage sag at this time.
Drive Timing Chart (Vertical Sequence) High Frame Rate Readout Mode \rightarrow Frame Readout Mode/Electronic Shutter Normal Operation

CCD
OUT
Drive Timing Chart (Vertical Sync) NTSC/PAL Frame Readout Mode
NTSC: 4.28 frame/s, PAL: 4.17 frame/s

Note) 2288fH, However, 919 H and 1828 H in NTSC mode are 1716 clk , and $944 \mathrm{H}, 945 \mathrm{H}$, 1889 H and 1890 H in PAL mode are 1208 clk .

V1A/B
₹
$\underset{\substack{\infty\\}}{\substack{\infty \\ \hline}}$
>
$\stackrel{\oplus}{\omega}$

Mechanical
shutter
Vsub
Cont.

CCD
OUT
Drive Timing Chart (Readout) NTSC/PAL Frame Readout Mode

Drive Timing Chart (High-speed Sweep Operation) NTSC/PAL Frame Readout Mode

Drive Timing Chart (Horizontal Sync) NTSC/PAL Frame Readout Mode

Drive Timing Chart (Vertical Sync) NTSC/PAL High Frame Rate Readout Mode
NTSC: 30 frame/s, PAL: 25 frame/s

Note) 2288fH, However, 263H in NTSC mode is 1144 clk , and 315 H in PAL mode is 1568 clk .
Drive Timing Chart (Readout) NTSC/PAL High Frame Rate Readout Mode

Drive Timing Chart (Horizontal Sync) NTSC/PAL High Frame Rate Readout Mode, AF1 Mode, AF2 Mode

Drive Timing Chart (Vertical Sync) NTSC/PAL AF1 Mode
NTSC: 60 frame/s, PAL: 50 frame/s

Note) 2288 fH , However, 182 H in NTSC mode is 572 clk , and 158 H in PAL mode is 784 clk .
Drive Timing Chart (Vertical Sync) NTSC/PAL AF2 Mode
NTSC: 120 frame/s, PAL: 100 frame/s

Note) 2288 fH , However, 66 H in NTSC mode is 1430 clk , and 79 H in PAL mode is 1356 clk .
Drive Timing Chart (High-speed Frame Shift Operation) NTSC/PAL AF1 Mode, AF2 Mode

Notes on Handling

1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.
a) Either handle bare handed or use non-chargeable gloves, clothes or material.

Also use conductive shoes.
b) When handling directly use an earth band.
c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
d) lonized air is recommended for discharge when handling CCD image sensors.
e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.
2) Soldering
a) Make sure the package temperature does not exceed $80^{\circ} \mathrm{C}$.
b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero-cross On/Off type and connect it to ground.
3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operations as required, and use them.
a) Perform all assembly operations in a clean room (class 1000 or less).
b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
c) Clean with a cotton bud and ethyl alcohol if grease stained. Be careful not to scratch the glass.
d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
4) Installing (attaching)
a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7 mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.)

Compressive strength

Torsional strength
b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to other locations as a precaution.
d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package.
e) If the leads are bent repeatedly and metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin.
f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)
5) Others
a) Do not expose to strong light (sun rays) for long periods, as color filters will be discolored. When high luminous objects are imaged with the exposure level controlled by the electronic iris, the luminance of the image-plane may become excessive and discoloring of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the poweroff mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company.
b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
c) Brown stains may be seen on the bottom or side of the package. But this does not affect the CCD characteristics.
d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength are the same.

Structure A Structure B

The cross section of lead frame can be seen on the side of the package for structure A.

