FEATURES:

- First-In/First-Out Dual-Port memory-45MHz
- 64×5 organization
- Low-power consumption
- Active: 200 mW (typical)
- RAM-based internal structure allows for fast fall-through time
- Asynchronous and simultaneous read and write
- Expandable by bit width
- Cascadable by word depth
- Half-Full and Almost-Full/Empty status flags
- High-speed data communications applications
- Bidirectional and rate buffer applications
- High-performance CMOS technology
- Available in plastic DIP and SOIC
- Green parts available, see ordering information

DESCRIPTION:

The IDT72413 is a 64×5, high-speed First-In/First-Out (FIFO) that loads andempties dataonafirst-in-first-outbasis. Itis expandablein bitwidth. All speed versions are cascad-able in depth.

The FIFO has a Half-Full Flag, which signals when ithas 32 or more words in memory. The Almost-Full/Empty Flag is active when there are 56 or more words in memory or when there are 8 or less words in memory.

This device is pin and functionally compatible to the MMI67413. Itoperates at a shift rate of 45 MHz . This makes itideal for use inhigh-speed data buffering applications. This FIFO canbe usedas a ratebuffer, betweentwo digital systems of varying data rates, in high-speed tape drivers, hard disk controllers, data communications controllers anD graphics controllers.

The IDT72413 is fabricated using high-performanceCMOS process. This process maintains the speed and high output drive capability of TTL circuits in low-power CMOS.

FUNCTIONAL BLOCK DIAGRAM

[^0]PIN CONFIGURATION


```
PLASTIC DIP (P20-1, ORDER CODE: P) SOIC (SO20-2, ORDER CODE: SO) TOP VIEW
```


CAPACITANCE

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
CIN	InputCapacitance	$\mathrm{VIN}=0 \mathrm{~V}$	5	pF
COUT	OutputCapacitance	Vout $=0 \mathrm{~V}$	7	pF

NOTE:
2748 tbl 02

1. Characterized values, not currently tested

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Unit
VTERM	TerminalVoltagewith Respect to GND	-0.5 to +7.0	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DC Output Current	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage Commercial	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
VIH	Input High Voltage	2.0	-	-	V
VIL $^{(1)}$	InputLow Voltage	-	-	0.8	V
TA	OperatingTemperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$

NOTE:

1. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Conditions			IDT72413 Commercial fin $=45,35,25 \mathrm{MHz}$		Unit
					Min.	Max.	
IIL	Low-Level InputCurrent	Vcc = Max., GND \leq VI \leq Vcc			-10	-	$\mu \mathrm{A}$
IIH	High-Level Input Current	Vcc $=$ Max., GND $\leq \mathrm{VI} \leq \mathrm{Vcc}$			-	10	$\mu \mathrm{A}$
Vol	Low-Level OutputCurrent	Vcc $=$ Min.	IOL (Q0-4)	24 mA	-	0.4	V
			IoL (IR, OR) ${ }^{(1)}$	8 mA			
			Iol (HF, AF/E)	8 mA			
VOH	High-Level Output Current	$\mathrm{Vcc}=\mathrm{Min}$.	$\mathrm{IOH}(\mathrm{QO-4})$	-4mA	2.4	-	V
			IOH (IR, OR)	-4mA			
			Іон (HF, AF/E)	-4mA			
Ios ${ }^{(2)}$	OutputShort-CircuitCurrent	$V C C=M a x$.	$\mathrm{Vo}=0 \mathrm{~V}$		-20	-110	mA
IHz	HIGH Impedance Output Current	$V C c=$ Max .	$\mathrm{Vo}=2.4 \mathrm{~V}$		-	20	$\mu \mathrm{A}$
ILZ	LOW Impedance Output Current	$V C C=$ Max.	$\mathrm{Vo}=0.4 \mathrm{~V}$		-20	-	$\mu \mathrm{A}$
Icc ${ }^{(3,4)}$	Active Supply Current	$\text { Vcc }=\text { Max. }$ Inputs LOW	$\begin{aligned} & \overline{\mathrm{O}} \overline{\mathrm{E}}=\mathrm{HIGH} \\ & \mathrm{f}=25 \mathrm{MHz} \end{aligned}$		-	60	mA

NOTES:

1. Care should be taken to minimize as much as possible the DC and capactive load on IR and OR when operating at frequencies above 25 MHz .
2. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. Guaranteed by design, but not currently tested.
3. Tested with outputs open (lout $=0$).
4. For frequencies greater than $25 \mathrm{MHz}, \mathrm{Icc}=60 \mathrm{~mA}+(1.5 \mathrm{~mA} \times[\mathrm{f}-25 \mathrm{MHz}])$

OPERATING CONDITIONS

(Commercial: $\mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Figure	Commercial						Unit
			IDT72413L45		IDT72413L35		IDT72413L25		
			Min.	Max.	Min.	Max.	Min.	Max.	
tSIH ${ }^{(1)}$	Shift in HIGH Time	2	9	-	9	-	16	-	ns
tSIL ${ }^{(1)}$	Shift in LOW TIme	2	11	-	17	-	20	-	ns
tIDS	InputDataSet-up	2	0	-	0	-	0	-	ns
tIDH	Input Data Hold Time	2	13	-	15	-	25	-	ns
tsOH ${ }^{(1)}$	Shift Out HIGH Time	5	9	-	9	-	16	-	ns
tsol	Shift Out LOW Time	5	11	-	17	-	20	-	ns
tMRW	Master Reset Pulse	8	20	-	30	-	35	-	ns
tmRS	Master Reset Pulse to SI	8	20	-	35	-	35	-	ns

NOTE:

1. Since the FIFO is a very high-speed device, care must be excercised in the design of the hardware and timing utilized within the design. Device grounding and decoupling are crucial to correct operation as the FIFO will respond to very small glitches due to long reflective lines, high capacitances and/or poor supply decoupling and grounding. A monolithic ceramic capacitor of $0.1 \mu \mathrm{~F}$ directly between VCC and GND with very short lead length is recommended.

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Symbol	Parameter	Figure	Commercial						Unit
			IDT72413L45		IDT72413L35		IDT72413L25		
			Min.	Max.	Min.	Max.	Min.	Max.	
fin	Shift In Rate	2	-	45	-	35	-	25	MHz
tIRL ${ }^{(1)}$	Shift In \uparrow to Input Ready LOW	2	-	18	-	18	-	28	ns
tIRH ${ }^{(1)}$	Shift In \downarrow to Input Ready HIGH	2	-	18	-	20	-	25	ns
fout	Shift Out Rate	5	-	45	-	35	-	25	MHz
torL ${ }^{(1)}$	Shift Out \downarrow to Output Ready LOW	5	-	18	-	18	-	28	ns
torH ${ }^{(1)}$	Shift Out \downarrow to Output Ready HIGH	5	-	19	-	20	-	25	ns
todi ${ }^{(1)}$	Output Data Hold Previous Word	5	5	-	5	-	5	-	ns
tods	OutputData ShiftNextWord	5	-	19	-	20	-	20	ns
tPT	Data Throughputor"Fall-Through"	4,7	-	25	-	28	-	40	ns
tmRORL	Master Reset \downarrow to Output Ready LOW	8	-	25	-	28	-	30	ns
tMRIRH $^{(3)}$	Master Reset \uparrow to Input Ready HIGH	8	-	25	-	28	-	30	ns
tMRIRL ${ }^{(2)}$	Master Reset \downarrow to Input Ready LOW	8	-	25	-	28	-	30	ns
tmRQ	Master Reset \downarrow to Outputs LOW	8	-	20	-	25	-	35	ns
tmRHF	Master Reset \downarrow to Half-Full Flag	8	-	25	-	28	-	40	ns
tMRAFE	Master Reset \downarrow to AF/E Flag	8	-	25	-	28	-	40	ns
$\mathrm{tIPH}^{(3)}$	Input Ready Pulse HIGH	4	5	-	5	-	5	-	ns
toPh ${ }^{(3)}$	Output Ready Pulse HIGH	7	5	-	5	-	5	-	ns
tord ${ }^{(3)}$	Output Ready \uparrow HIGH to Valid Data	5	-	5	-	5	-	7	ns
taEH	Shift Out \uparrow to AF/E HIGH	9	-	28	-	28	-	40	ns
tAEL	Shift In \uparrow to AF/E	9	-	28	-	28	-	40	ns
tAFL	Shift Out \uparrow to AF/E LOW	10	-	28	-	28	-	40	ns
tafh	Shift In \uparrow to AF/E HIGH	10	-	28	-	28	-	40	ns
thFH	Shift In \uparrow to HF HIGH	11	-	28	-	28	-	40	ns
thFL	Shift Out \uparrow to HF LOW	11	-	28	-	28	-	40	ns
tPHz ${ }^{(3)}$	Output Disable Delay	12	-	12	-	12	-	15	ns
tPLZ ${ }^{(3)}$		12	-	12	-	12	-	15	
tPLZ ${ }^{(3)}$	OutputEnable Delay	12	-	15	-	15	-	20	ns
tPHz ${ }^{(3)}$		12	-	15	-	15	-	20	

NOTES:

1. Since the FIFO is a very high-speed device, care must be taken in the design of the hardware and the timing utilized within the design. Device grounding and decoupling are crucial to correct operation as the FIFO will respond to very small glitches due to long reflective lines, high capacitances and/or poor supply decoupling and grounding. A monolithic ceramic capacitor of $0.1 \mu \mathrm{~F}$ directly between Vcc and GND with very short lead length is recommended.
2. If the FIFO is full, ($\mathbb{R}=\mathrm{HIGH}$), $\overline{\mathrm{MR}} \uparrow$ forces IR to go LOW, and $\overline{\mathrm{MR}} \downarrow$ causes IR to go HIGH .
3. Guaranteed by design but not currently tested.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
InputRise/FallTimes	3ns
Input Timing Reference Levels	1.5V
OutputReferenceLevels	1.5V
OutputLoad	See Figure 1
2748 tol 07	

STANDARD TEST LOAD

DESIGN TEST LOAD

2748 drw 03
orequivalentcircuit
*Including scope and jig

RESISTOR VALUES FOR STANDARD TEST LOAD

IOL	R1	R2
24 mA	200Ω	300Ω
12 mA	390Ω	760Ω
8 mA	600Ω	1200Ω

Figure 1. Output Load

DATAOUTPUT

DataisshiftedoutontheHIGH-to-LOWtransition ofShiftOut(SO). Thiscauses the internal read pointer to be advanced to the next word location. If data is present, valid data will appear on the outputs and Output Ready (OR) will go HIGH. Ifdatais not present, OR will stay LOW indicating the FIFO is empty. The lastvalid word read from the FIFO will remain attheFIFOs outputwhenitisempty. When the FIFO is notempty ORgoes LOW on the LOW-to-HIGH transition of SO.

FALL-THROUGH MODE

The FIFO operates in a Fall-Through Mode when data gets shifted into an empty FIFO. Afterthefall-through delay the datapropagates totheoutput. When the data reaches the output, the Output Ready (OR) goes HIGH.

AFall-Through Modealsooccurs when the FIFO is completely full. When datais shifted outofthe full FIFO a location is available fornew data. After a fallthrough delay, the Input Ready goes HIGH. If Shift In is HIGH, the new data can be written to the FIFO. The fall-through delay ofaRAM-based FIFO (one clock cycle) is far less than the delay of a Shift register-based FIFO.

SIGNAL DESCRIPTIONS:

INPUTS:

DATA INPUT (D0-4)
Data input lines. The IDT72413 has a 5-bit data input.

CONTROLS:

SHIFT IN (SI)

Shift In controls the input of the data into the FIFO. When SI is HIGH, data can be written to the FIFO via the D0-4 lines. The data has to meet set-up and hold time requirements with respect to the rising edge of SI .

SHIFT OUT (SO)

Shift Out controls the outputs data from the FIFO.

MASTER RESET ($\overline{\mathrm{MR}}$)

MasterResetclears the FIFO of any datastored within. Upon powerup, the FIFO should be cleared with a Master Reset. Master Reset is active LOW.

HALF-FULL FLAG (HF)

Half-Full Flag signals when the FIFO has 32 or more words in it.

OUTPUT READY (OR)

When Output Ready is HIGH, the output(Q0-4) contains valid data. When OR is LOW, the FIFO is unavailable for new output data. OR is also used to cascade many FIFOs together, as shown in Figure 13.

OUTPUT ENABLE ($\overline{\mathrm{OE}})$

Output Enable is used to enable the FIFO outputs onto a bus. $\overline{\mathrm{OE}}$ is active LOW.

ALMOST-FULL/EMPTY FLAG (AF/E)

Almost-Full/Empty Flag signals whenthe FIFO is 7/8full (56 or more words) or $1 / 8$ from empty (8 or less words).

OUTPUTS:

DATAOUTPUT(Q0-4)
Data outputlines, three-state. The IDT72413 has a 5-bit output.

INPUT READY (IR)

When Input Ready is HIGH, the FIFO is ready fornew input data to be written to it. When IR is LOW, the FIFO is unavailable for new input data, IR is also used to cascade many FIFOs together, as shown in Figure 13.

Figure 2. Input Timing

INPUT DATA

NOTES:

1. IR HIGH indicates space is available and a SI pulse may be applied.
2. Input Data is loaded into the FIFO.
3. IR goes LOW indicating the FIFO is unavailable for new data.
4. The write pointer is incremented.
5. The FIFO is ready for the next word.
6. If the FIFO is full, then IR remains LOW.
7. SI pulses applied while IR is LOW will be ignored (see Figure 4).

Figure 4. Data is Shifted In Whenever Shift In and Input Ready are Both HIGH

NOTES:

1. This data is loaded consecutively $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
2. Output data changes on the falling edge of $S O$ after a valid $S O$ sequence, i.e., $O R$ and $S O$ are both HIGH together.

Figure 5. Output TIming

NOTES:

1. OR HIGH indicates that data is available and a SO pulse may be applied.
2. SO goes HIGH causing the next step.
3. OR goes LOW.
4. Read pointer is incremented.
5. OR goes HIGH indicating that new data (B) will be available at the FIFO outputs after tord ns.
6. If the FIFO has only one word loaded (A DATA), OR stays LOW and the A-DATA remains unchanged at the outputs.
7. SO pulses applied when OR is LOW will be ignored.

Figure 6. The Mechanism of Shifting Data Out of the FIFO

NOTE:

1. FIFO initailly empty.

Figure 7. tPT and tOPH Specification

NOTE:

1. FIFO is partially full.

Figure 8. Master Reset Timing

NOTE:

1. FIFO contains 9 words (one more than Almost-Empty).

Figure 9. tAEH and tAEL Specifications

NOTE:

1. FIFO contains 55 words (one short of Almost-Full).

Figure 10. tafh and tafl Specifications

NOTE:

1. FIFO contains 31 words (one short of Half-Full).

Figure 11. tHFL and tHFH Specifications

NOTES:

1. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control.
2. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.

Figure 12. Enable and Disable

NOTE:

1. FIFOs are expandable in width. However, in forming wider words two external gates are required to generate composite Input and Output Ready flags. This requirement is due to the different fall-through times of the FIFOs.

Figure 13. 64×15 FIFO with IDT72413

NOTE:

1. Cascading the FIFOs in word width is done by ANDing the IR and OR as shown in Figure 13.

Figure 14. Application for IDT72413 for Two Asynchronous Systems

NOTE:

1. FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.

Figure 15. 128×5 Depth Expansion

ORDERING INFORMATION
Device Type
Power
Speed

NOTES:

1. Industrial temperature range is available by special order.
2. Green parts are available, for specific speeds and packages contact your sales office.
3. For " P ", Plastic Dip , when ordering green package, the suffix is "PDG".

DATASHEET DOCUMENT HISTORY

$07 / 10 / 2003$	pgs. 1, 2, 3, and 10.
$02 / 11 / 2009$	pgs. 1 and 10.
$06 / 29 / 2012$	pgs. 1, 2, 9 and 10.

800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com

[^0]: IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc

