FEATURES:

- Bus switches provide zero delay paths
- Extended commercial range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Low switch on-resistance:

FST163xxx - 4Ω

- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model $(\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0)$
- Available in SSOP, TSSOP and TVSOP

DESCRIPTION:

The FST163214 belong to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of
their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no Vcc applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

The FST163214 provides a 12-bit TTL- compatible A port and three 12 -bit TTL compatible B ports. The $\mathrm{S} 0-2$ pins provide mux select and disable control. The A port can be connected to any one of the three B ports by selecting appropriate $\mathrm{S} 0-2$ states.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

Pin Names	I/O	Description
A_{1}	I / O	Bus A1
$\mathrm{B}_{1}, \mathrm{~B} 2, \mathrm{~B} 3$	I / O	Buses B1, B2, B3
$\mathrm{So}_{3} 2$	I	Select Lines

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
IOUT	Maximum Continuous Channel Current	128	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating condiitions for extended periods may affect reliability.
2. Vcc, Control and Switch terminals.

CAPACITANCE ${ }^{(1)}$

Symbol	Parameter	Conditions(2)	Typ.	Unit
CIN	Control Input Capacitance		4	pF
C / O	Switch Input/Output Capacitance	Switch Off		pF

NOTES:
3209 tbl 03

1. Capacitance is characterized but not tested
2. $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}$, Vout $=0 \mathrm{~V}$

FUNCTION TABLE

S2	S1	S0	A1	Function
L	L	L	Z	Disconnect
L	L	H	B1	A to B1
L	H	L	B2	A to B2
L	H	H	Z	Disconnect
H	L	L	Z	Disconnect
H	L	H	B3	A to B3
H	H	L	B1	A to B1
H	H	H	B2	A to B2

3209 tbl 04

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Commercial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs		2.0	-	-	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Inputs		-	-	0.8	V
IIH	Input HIGH Current	Vcc = Max.	VI = Vcc	-	-	± 1	$\mu \mathrm{A}$
IIL	Input LOW Voltage		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
lozH	High Impedance Output Current (3-State Output pins)	$\mathrm{Vcc}=$ Max.	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
lozl			$\mathrm{Vo}=\mathrm{GND}$	-	-	± 1	
los	Short Circuit Current	$\mathrm{Vcc}=$ Max., $\mathrm{Vo}=\mathrm{GND}^{(3)}$		-	300	-	mA
VIK	Clamp Diode Voltage	$\mathrm{VcC}=$ Min., $\mathrm{IIN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Ron	Switch On Resistance ${ }^{(4)}$	$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} . \mathrm{VIN}=0.0 \mathrm{~V} \\ & \mathrm{ION}=64 \mathrm{~mA} \end{aligned}$		-	4	7	Ω
		$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} . \mathrm{VIN}=0.0 \mathrm{~V} \\ & \mathrm{ION}=30 \mathrm{~mA} \end{aligned}$		-	4	7	Ω
		$\begin{aligned} & \mathrm{VCC}=\mathrm{Min} . \mathrm{VIN}=2.4 \mathrm{~V} \\ & \mathrm{ION}=15 \mathrm{~mA} \end{aligned}$		-	6	15	Ω
IOFF	Input/Output Power Off Leakage	$\mathrm{VCC}=0 \mathrm{~V}$, Vin or Vo $\leq 4.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$
IcC	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc		-	0.1	3	$\mu \mathrm{A}$

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.
4. Measured by voltage drop between ports at indicated current through the switch.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
-ICC	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VcC}=\mathrm{Max} \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \\ & \hline \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc = Max. Outputs Open Enable Pin Toggling 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	30	40	
Ic	Total Power Supply Current ${ }^{(6)}$	Vcc = Max. Outputs Open 3 Select Pins Toggling (12 Switches Toggling) $\mathrm{fi}=10 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \\ & \mathrm{VIN}=3.4 \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	3.6	4.8 7.1	mA

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{VcC}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input ($\mathrm{V} / \mathrm{N}=3.4 \mathrm{~V}$). All other inputs at Vcc or GND .
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC}$ DHNT $+\mathrm{ICCD}(\mathrm{fiN})$
Icc = Quiescent Current
$\Delta \mathrm{IcC}=$ Power Supply Current for a TTL High Input (VIN $=3.4 \mathrm{~V}$)
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
$\mathrm{fi}_{\mathrm{i}}=$ Input Frequency
$\mathrm{N}=$ Number of Switches Toggling at fi
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Commercial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Description	Condition ${ }^{(1)}$	Min. ${ }^{(2)}$	Typ.	Max.	Unit	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Data Propagation Delay A to B, B to $A^{(3,4)}$	$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	-	-	0.25	ns	
tBX	Switch Multiplex Delay S to A, B		1.5	-	6.5	ns	
$\begin{aligned} & \hline \text { tPZH } \\ & \text { tPZL } \\ & \hline \end{aligned}$	Switch Turn on Delay S to A, B		1.5	-	6.5	ns	
$\begin{array}{r} \text { tPHZ } \\ \text { tPLZ } \\ \hline \end{array}$	Switch Turn off Delay S to A, B		1.5	-	7	ns	
\|QcI		Charge Injection, Typical ${ }^{(5,7)}$		-	1.5	-	pC
\|Qdcı		Differential Charge Injection, Typical ${ }^{(6,7)}$		-	0.5	-	

NOTES:

1. See test circuit and waveforms.
2. Minimum limits guaranteed but not tested.
3. This parameter is guaranteed by design but not tested.
4. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 2.5 ns for 50 pF load. Since this time is constant and much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay on the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
5. Measured at switch turn off, load $=50 \mathrm{pF}$ in parallel with $10 \mathrm{M} \Omega$ scope probe, $\mathrm{VIN}=0.0$ volts.
6. Measured at switch turn off through bus multiplexer, (e.g.- A to $\mathrm{B} 1=>A$ to B 2), load $=50 \mathrm{pF}$ in parallel with $10 \mathrm{M} \Omega$ scope probe, Vin at $\mathrm{A}=0.0$ volts. Charge injection is reduced because the injection from the turn off of the A to $B 1$ switch is compensated by the turn on of the A to B2 switch.
7. Characterized parameter. Not 100% tested.

TEST CIRCUITS AND WAVEFORMS

TEST CIRCUITS FOR ALL OUTPUTS

3209 Ink 03

SET-UP, HOLD AND RELEASE TIMES

PROPAGATION DELAY

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

$C L=$ Load capacitance: includes jig and probe capacitance.
Rt = Termination resistance: should be equal to Zout of the Pulse Generator.

PULSE WIDTH

ENABLE AND DISABLE TIMES

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control DisableHIGH
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$

ORDERING INFORMATION

3209 drw 08

