DUAL 1-OF-4 DECODER/DEMULTIPLEXER High-Speed Silicon-Gate CMOS

The IN74ACT139 is identical in pinout to the LS/ALS139, HC/HCT139. The IN74ACT139 may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs.

This device consists of two independent 1 -of- 4 decoders, each of which decodes a two-bit Address to one-of-four active-low outputs. Active-low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input.

- TTL/NMOS Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: $1.0 \mu \mathrm{~A} ; 0.1 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- Outputs Source/Sink 24 mA

LOGIC DIAGRAM

ORDERING INFORMATION
IN74ACT139N Plastic IN74ACT139D SOIC $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$ for all packages

PIN ASSIGNMENT

SELECTa $_{\text {a }} 10$	16	V_{CC}
$\mathrm{A} 0_{\mathrm{a}}$ ¢2	15	SELECT $_{\text {b }}$
Al_{a}-3	14	$\mathrm{A} 0_{\mathrm{b}}$
YO_{a} ¢ 4	13	${ }^{\text {A }}{ }_{\text {b }}$
$Y 1_{a}$ - 5	12	YO_{b}
$Y 2 \mathrm{a}$, 6	11	${ }^{\mathrm{Y} 1}{ }_{\mathrm{b}}$
$\mathrm{Y3}_{\mathrm{a}} 7$	10	$] \mathrm{Y} 2 \mathrm{~b}$
GND 8	9	$\mathrm{Y}^{\text {b }}$

FUNCTION TABLE

Inputs				Outputs			
Select	A1	A0	Y	Y1	Y2	Y3	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

IN74ACT139

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cc }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{c c}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V
$\mathrm{I}_{\text {I }}$	DC Input Current, per Pin	± 20	mA
Iout	DC Output Sink/Source Current, per Pin	± 50	mA
I_{Cc}	DC Supply Current, V_{cc} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package +	$\begin{aligned} & 750 \\ & 500 \\ & \hline \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

"Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
+Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{cc}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{V}_{\text {cc }}$	V
T_{J}	Junction Temperature (PDIP)		140	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{IOH}^{\text {l }}$	Output Current - High		-24	mA
loL	Output Current - Low		24	mA
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall(except Schmitt Inputs) \quad $V_{c C}=4.5$ V $\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 8.0 \\ & \hline \end{aligned}$	ns/V

V_{IN} from 0.8 V to 2.0 V
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\text {CC }}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{cc}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{c}} \\ \mathrm{c} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limits		Unit
				$25^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
V_{IH}	Minimum High- Level Input Voltage	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}-0.1 \mathrm{~V}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Level Voltage Low -	$\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}-0.1 \mathrm{~V}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	Minimum High- Level Output Voltage	$\mathrm{I}_{\text {OUt }} \leq-50 \mu \mathrm{~A}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V
		$\mathrm{V}_{\mathrm{IN}^{2}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} $\mathrm{I}_{\mathrm{OH}}=-24$ mA $\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low- Level Output Voltage	$\mathrm{l}_{\text {OUT }} \leq 50 \mu \mathrm{~A}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
		$\mathrm{V}_{\mathrm{IN}}=$ V_{IH} or V_{IL} $\mathrm{I}_{\mathrm{OL}}=24$ mA $\mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.36 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & \hline \end{aligned}$	
I_{N}	Maximum Input Leakage Current	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CCT }}$	Additional Max. Icc/lnput	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$	5.5		1.5	mA
Iold	+Minimum Dynamic Output Current	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max	5.5		75	mA
$\mathrm{I}_{\text {OHD }}$	+Minimum Dynamic Output Current	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min	5.5		-75	mA
$I_{\text {cc }}$	Maximum Quiescent Supply Current (per Package)	$\mathrm{V}_{\mathbb{I}}=\mathrm{V}_{\text {cc }}$ or GND	5.5	8.0	80	$\mu \mathrm{A}$

All outputs loaded; thresholds on input associated with output under test.
+Maximum test duration 2.0 ms , one output loaded at a time.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, C_{\mathrm{L}}=50 \mathrm{pF}\right.$, $\left.\mathrm{Input} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Symbol	Parameter	Guaranteed Limits				Unit
		$25^{\circ} \mathrm{C}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Input A to Output Y (Figure 2)	1.5	8.5	1.5	9.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Input A to Output Y (Figure 2)	1.5	9.5	1.5	10.5	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Select to Output Y (Figure 1)	2.5	10.0	2.0	11.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Select to Output Y (Figure 1)	2.0	9.5	1.5	10.5	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance		5			pF

		Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0$	
C_{PD}	Power Dissipation Capacitance	V	pF

Figure 1. Switching Waveform

Figure 2. Switching Waveform

EXPANDED LOGIC DIAGRAM

