Octal 3-State Noninverting
 Bus Transceiver

These octal bus transceiver are designed for asynchronous two-way communication between data buses. The control function implementation minimized external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the directional control (DIR) input. The enable input(E) can be used to disable the device so that the buses are effectively isolated.

- Bidirectional Bus Transceiver in a High-Density 20-Pin Package
- 3-state Outputs Dirve Bus Lines Directly
- P-N-P Inputs D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improve Noise Margins
- Typical Propagation Delay Times; Port to Port ... 8 ns

LOGIC DIAGRAM

PIN 20 $=V_{\text {CC }}$
PIN $10=$ GND

PIN ASSIGNMENT

FUNCTION TABLE

Control Inputs		Operation
Output Enable	Direction	
L	L	Data Transmitted from Bus B to Bus A
L	H	Data Transmitted from Bus A to Bus B
H	X	Buses IIsolated (High Impedance State)

X = don't care

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	7.0	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	7.0	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	5.5	V
Tstg	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	Supply Voltage	4.75	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	High Level Input Voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low Level Input Voltage		0.8	V
I_{OH}	High Level Output Current		-15	mA
I_{OL}	Low Level Output Current		24	mA
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	0	+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS over full operating conditions

Symbol	Parameter		Test Conditions	Guaranteed Limit		Unit	
			Min	Max			
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\text {IV }}=-18 \mathrm{~mA}$		-1.5	V
V_{OH}	High Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$	2.7		V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}$	2.4			
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	2.0			
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	V	
			$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}, \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.5		
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\text {T- }}$	Hysteresis		$\mathrm{V}_{\mathrm{CC}}=\min$	0.2		V $\mu \mathrm{A}$	
$\mathrm{I}_{\text {OZH }}$	Output Off Current HIGH		$\mathrm{V}_{\text {CC }}=$ max, $\mathrm{V}_{\text {Out }}=2.7 \mathrm{~V}$		20		
$\mathrm{I}_{\text {OzL }}$	Output Off Current LOW		$\mathrm{V}_{\text {CC }}=$ max, $\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		-0.2	mA	
I_{IH}	High Level Input Current		$\mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		20	$\mu \mathrm{A}$	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \\ & (\mathrm{~A} \text { or } \mathrm{B}) \end{aligned}$		0.1	mA	
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V} \\ & \text { for Pin1, } \operatorname{Pin} 19 \end{aligned}$		0.1		
$\mathrm{I}_{\text {IL }}$	Low Level Input Current		$\mathrm{V}_{\mathrm{CC}}=$ max, $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$		-0.2	mA	
I_{O}	Output Short Circuit Current		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\max , \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	-40	-225	mA	
I_{CC}	SupplyCurrent	Outputs High Outputs Low All outputs disable	$\mathrm{V}_{\mathrm{CC}}=\max$ Outputs open		70	mA	
					90		
					95		

Note 1: Not more thanone output should be shorted at a time, and duration of the short-circuit should not exceed one second.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=15 \mathrm{~ns}\right.$, , $\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	Test Condition	Min	Max	Unit
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output (from A or B to Output)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		12	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output (from A or B to Output)			12	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level (from OE to Output)			40	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level (from OE to Output)			40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level (from OE to Output)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$		25	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time from Low Level (from OE to Output)			25	ns

Figure 1. Switching Waveforms
(See Figure 3)

NOTES A. C_{L} includes probe and jig capacitance.
B. All diodes are 1N916 or 1N3064.

$\mathrm{t}_{\text {PZL }}$ - S1 closed, S2 opened
$\mathrm{t}_{\mathrm{PZH}}{ }^{-}$S1 opened, S2 closed
$\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PHZ}}-\mathrm{S} 1$ and S2 closed
Figure 2. Switching Waveforms (See Figure 4)

Figure 4. Test Circuit

NOTES A. C_{L} includes probe and jig capacitance.
B. All diodes are 1 N916 or 1N3064.

Figure 3. Test Circuit

EXPANDED LOGIC DIAGRAM

N SUFFIX PLASTIC DIP (MS - 001AD)

20

NOTES:

| $\phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- | :--- |

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	24.89	26.92
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

(MS - 013AC)

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	12.6	13
\mathbf{B}	7.4	7.6
\mathbf{C}	2.35	2.65
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	9.53	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.3
\mathbf{M}	0.23	0.32
\mathbf{P}	10	10.65
\mathbf{R}	0.25	0.75

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side.
