INIC-1511 USB to PATA Bridge Specification

Version 0.5 June 12, 2006 Initio Corporation

Change History:

Table of Contents

1. Int	troduction	4
1.1	Feature Summary	
1.2	Firmware/Software Support	
1.3	Devices Support	
2. US	B to ATA Block Diagram	5
3. Pin	Signal Description: (48-pin package)	<i>6</i>
3.1	USB Interface6	
3.2	Serial Flash Interface	
3.3	ATA Interface6	
3.4 3.5	System Interface7	
<u>3.5</u>	GPIO Interface7	
3.6 3.7	Power Regulator pins	
<u>3.7</u>	Power/GND	
3.8	48 Pin Diagram8	
4. NV	RAM Program/Download procedure	9
4.1	CPU Write NVRAM9	
4.2	CPU Read NVRAM9	
4.3	CPU Poll NVRAM9	
4.4	Host Read/Write 8051 data space from USB9	
4.5	NVRAM Download from USB	
5. Reg	gister Address Mapping	11
_	gister Descriptions	
	ctrical Information	
	ckaging Specification	
o. rac	raging specification	∠0

1. Introduction:

The INIC-1511 provides an advanced solution to connect ATAPI or EIDE devices to USB interface with integrated CPU and embedded ROM. To provide a high performance and cost effective solution, the INIC-1511 integrates USB-PHY, Mass Storage Class Bulk-Only USB function, ATA control block and microprocessor into a single ASIC. The INIC-1511 provides the data transfer rate of up to 60 MB/sec; its ATA interface supports ultra DMA modes up to 100 MB/sec.

1.1 Feature Summary

- USB Mass Storage Class Bulk-Only specification-compliant (version 1.0)
- Two Bulk endpoints(IN and OUT) and one Interrupt endpoint(IN)
- T13 1410D ATA/ATAPI-6 Compliant(3.3 V with 5V tolerance)
- Support DMA mode 0-2, and UDMA mode 2, 3, 4 and 5 (up to 100MB/s)
- Integrated internal CPU with embedded ROM
- Implement the NVRAM download mechanism
- Low power CMOS with 3.3Volts
- 48-pin LQFP package

1.2 Firmware/Software Support

- USB Mass Storage Class Bulk-Only Transport support
- Provide software utilities for downloading the upgraded NVRAM

1.3 Devices Support

- Hard disk drives
- CD-RW devices
- DVDs
- Removable media devices.

2. USB to ATA Block Diagram:

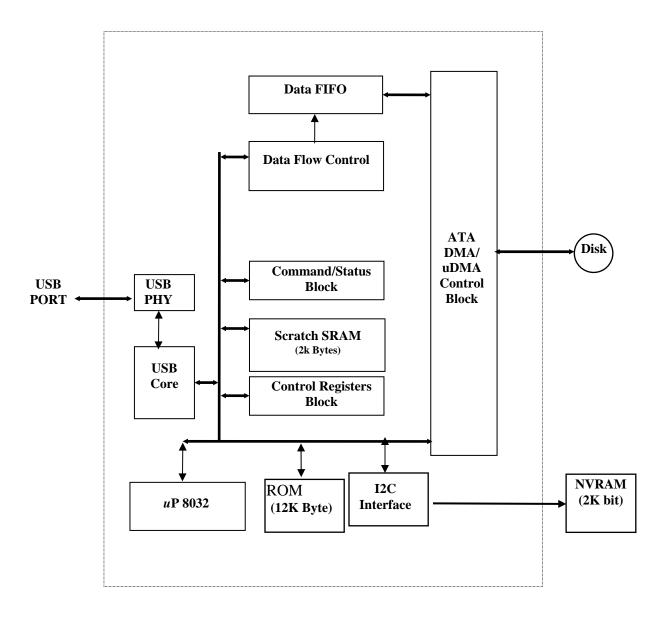


Figure 1: INIC-1511 Block Diagram

3. Pin Signal Description: (48-pin package)

3.1 USB Interface

Signal Name	Pin Number	I/O	Driver Type	Description
DP	16	I/O	USB high /full	High/Full speed D+ signal
			speed buffer	
			(D+)	
DM	17	I/O	USB high/full	High/Full speed D- signal
			speed buffer	
			(D-)	
RREF	14	A	Power	PLL voltage reference. Current source
				for 330R(1%) resistor connected to
				AVSS
VBUS	13	I	PISW	Active HIGH. Indicates that VBUS is
				present.
XIN	19	I	A	Crystal oscillator input (12MHz)
XOUT	20	O	A	Crystal oscillator output (12MHz)

3.2 NVRAM Interface

Signal Name	Pin Number	I/O	Driver Type	Description
I2C_SCL	7	I/O	PBU4W	NVRAM Clock, or P3_3
				Internal pullup
I2C_SDA	8	I/O	PBU4W	NVRAM Data., or P1_4
				Internal pullup

3.3 ATA Interface (driving current 8mA-16mA controlled by Register 0x40A8[1:0])

Signal Name	Pin Number	I/O	Driver Type	Description
ataD[15:0]	35, 37, 39, 41,	I/O	PBSCUDSL	ATA Data Bus
	43, 45, 47, 1,			
	48, 46, 44, 42,			
	40, 38, 36, 34			
ataDA[2:0]	27, 26, 25	I/O	PBSCUDSL	ATA Device Address
ataRST#	5	I/O	PBSCUDSL	ATA Reset (Out)
ataCS[1:0]#	3, 2	I/O	PBSCUDSL	ATA Device Chip Select (Out)
ataDMARQ	33	I/O	PBSCUDSL	ATA DMA Request (In)
ataDMACK#	28	I/O	PBSCUDSL	ATA DMA Acknowledge (Out)

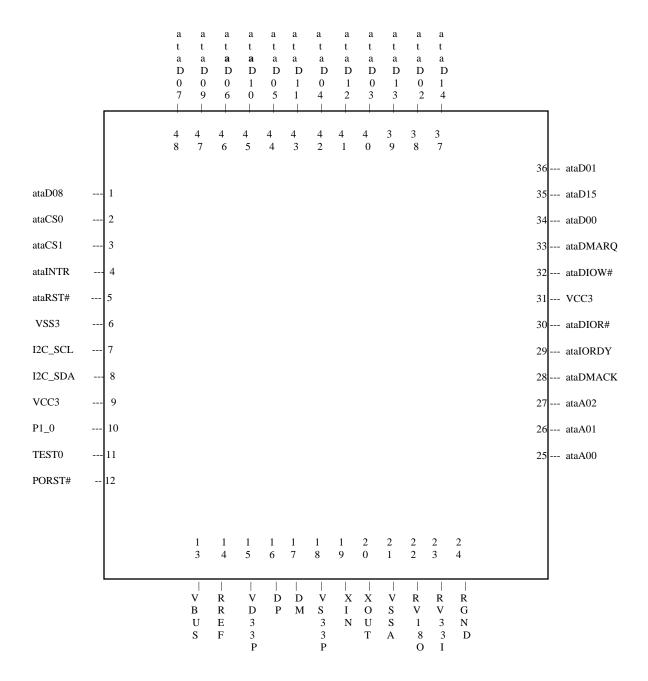
ataDIOW#	32	I/O	PBSCUDSL	ATA I/O Write (Out)	
ataDIOR#	30	I/O	PBSCUDSL	ATA I/O Read (Out)	
				. ,	
ataIORDY	29	I/O	PBSCUDSL	ATA I/O ready (In)	
				• • • • • • • • • • • • • • • • • • • •	
ataINTR	4	I/O	PBSCUDSL	ATA Interrupt Request	

3.4 System Interface

Signal Name	Pin Number	I/O	Driver Type	Description	
PORST#	12	I	PISW	Power On Reset. When this signal is	
				active, all of pins on ATA interface	
				should be tri-stated.	
TEST0	11	I	PIDW	Test Mode Select. Default 0.	
				0-> Normal Operation Mode	
				1-> Test Mode	

3.5 GPIO Interface

Signal Name	Pin Number	I/O	Driver Type	Description
P1_0	10	I/O	PBU4W	uP8032 I/O port . Internal pullup


3.6 Power Regulator pins

Signal Name	Pin Number	I/O	Driver Type	Description
RV33I	23	I		Internal regulator 3.3V input
RGND	24	I		Regulator ground
RV18O	22	О		Internal regulator 1.8V output

3.7 Power/GND

Signal Name	Pin Number	I/O	Driver Type	Description
VCC3	9,31			IO 3.3V
VSS3	6			IO GND
VD33P	15			3.3V, for VDD33P and VD33
VS33P	18			USB IO Cell GND
VSSA	21			VSSA for PLL

3.8 48-Pin Diagram

4. NVRAM Program/Download procedure

4.1 CPU Write NVRAM.

- 1. CPU write access address at register I2C_Addr(0x40E0).
- 2. CPU write data at register I2C_Data(0x40E1).
- 3. CPU write Control Code at register I2C Ctrl(0x40E2).
- 4. CPU write Run and Read_Write direction(0) at register I2C_Comm(0x40E3).
- 5. CPU poll I2C Comm bit 7, wait until cleared.
- 6. CPU may read register I2C_Status(0x40E4) to check write success or not.

4.2 CPU Read NVRAM.

- 1. CPU write access address at register I2C_Addr(0x40E0).
- 2. CPU write Control Code at register I2C_Ctrl(0x40E2).
- 3. CPU write Run and Read_Write direction(1) at register I2C_Comm(0x40E3).
- 4. CPU poll I2C_Comm bit 7, wait until cleared.
- 5. CPU read register I2C_Data(0x40E1).
- 6. CPU may read register I2C_Status(0x40E4) to check read success or not.

4.3 CPU Poll NVRAM.

After write data to NVRAM, NVRAM need certain time before next write operation can be accepted. CPU may poll NVRAM to decide NVRAM ready or not. It is done same as a NVRAM read. If I2C_Status(0x40E4) bit 0 is 1, the NVRAM not ready.

4.4 Host Read/Write 8051 data space from USB

- 1. Host send READ_CHIP_ID packet through control channel to read chip-ID, which is 0x29C5_1511 here. Default hardware report PID is 0x1518.
- 2. Host send HOLD CPU packet through control channel to set HOLD CPU bit.
- 3. Host may send DATA_WRITE/DATA_READ packet through control channel to WRITE/READ 8051 data space.

DATA_WRITE setup packet format is,

offset	field	size	value	Description
0	bmReqType	1	0x40	Vendor write
1	bReq	1	0x81	Data space write
2	wValue	2	Addr[7:0]	Address to be writen
3			Addr[15:8]	
4	wIndex	2	Data[7:0]	Data space data
5			0x00	Don't care
6	wLength	2	0x00	
7			0x00	

DATA_READ setup packet format is,

offset	field	size	value	data	Description
0	bmReqType	1	0xc0	Data from	Vendor read
1	bReq	1	0x82	Data space	Data read
2	wValue	2	Addr[7:0]		Address to be writen
3			Addr[15:8]		ļ.

4	wIndex	2	0x00	Don't care
5			0x00	Don't care
6	wLength	2	0x01	
7			0x00	

READ CHIP ID setup packet format is:

Offset	Field	Size	Value	Data	Description
0	bmReqType	1	0xc0	Chip-ID	Vendor read
1	bReq	1	0x03	0x11,	
2	wValue	2	0x00	0x15,	
3			0x00	0xc9,	
4	wIndex	2	0x00	0x25	Don't care
5			0x00		Don't care
6	wLength	2	0x04		
7			0x00		

HOLD_CPU setup packet format is:

Offset	Field	Size	Value	Description
0	bmReqType	1	0x40	Vendor write
1	bReq	1	0x04	HOLD_CPU
2	wValue	2	0x00	Don't care
3			0x00	
4	wIndex	2	0x00	Don't care
5			0x00	Don't care
6	wLength	2	0x00	Don't care
7			0x00	Don't care

4.5 NVRAM Download from USB cable

The download utility may read/write NVRAM through access I2C registers similar as CPU does.

- 1. Host send READ_CHIP_ID packet through control channel to read chip-ID, which is 0x29C5_1511 here. Default hardware report PID is 0x1518.
- 2. Host send HOLD_CPU packet through control channel to set HOLD_CPU bit.

4.5.1 NVRAM Write.

- 3. Host send DATA_WRITE packet with wValue I2C_Addr(0x40E0) and wIndex[15:8] the NVRAM address to be accessed
- 4. Host send DATA_WRITE packet with wValue I2C_Data(0x40E1) and wIndex[15:8] the value to be write to NVRAM
- 5. Host send DATA_WRITE packet with wValue I2C_Ctrl(0x40E2) and wIndex[15:8] the Control Code to be write to NVRAM
- 6. Host send DATA_WRITE packet with wValue I2C_Comm(0x40E3) and wIndex[15:8] the Run bit[b7] and read/write direction 0 [b0]

- 7. Host poll bit 7 of I2C_Comm(0x40E3) until this bit is cleared by sending DATA_READ packet with wValue I2C_Comm(0x40BF)
- 8. Host send DATA_READ packet with wValue I2C_Status(0x40E4) to check write success or not

4.5.2 NVRAM Read.

- Host send DATA_WRITE packet with wValue I2C_Addr(0x40E0) and wIndex[15:8] the NVRAM address to be accessed
- 10. Host send DATA_WRITE packet with wValue I2C_Ctrl(0x40E2) and wIndex[15:8] the Control Code to be write to NVRAM
- 11. Host send DATA_WRITE packet with wValue I2C_Comm(0x40E3) and wIndex[15:8] the Run bit[b7] and read/write direction 1 [b0]
- 12. Host poll bit 7 of I2C_Comm(0x40E3) until this bit is cleared by sending DATA_READ packet with wValue I2C_Comm(0x40E3)
- 13. Host send DATA_READ packet with wValue I2C_Data(0x40E1) to get the data from NVRAM.
- 14. Host send DATA_READ packet with wValue I2C_Status(0x40E4) to check write success or not

4.5.3 NVRAM Polling.

Same as NVRAM Read. If I2C_Status(0x40E4) bit 0 is 1, NVRAM not ready for next write.

5. Register Address Mapping:

5.1 USB Block (address area: 60xx)

Adduses	Dood Volus	Wwite Volve
Address	Read Value	Write Value
20h	Dev_Status	Dev_Status
21h	Funct_Adr	Funct_Adr
22h	Test_mode	Test_mode
25h	EpTxLength[7:0]	EpTxLength[7:0]
26h	EpTxLength[15:8]	EpTxLength[15:8]
30h	EP0_Status	EP0_ Control (Set)
31h	EP0_Status	EP0_ Control (Clear)
32h	EP0_Status2	EP0_ Control 2(Set)
33h	EP0_Status2	EP0_ Control 2(Clear)
34h	EP0TxLength	EP0TxLength
38-3F	Hdr0-7	-
40h	EP1_Status	EP1_ Control (Set)
41h	EP1_Status	EP1_ Control (Clear)
50h	EP2_Status	EP2_ Control (Set)
51h	EP2_Status	EP2_ Control (Clear)
52h	Usb_rxLength[7:0]	-
53h	Usb_rxlength[15:8]	-
60h	EP3_Status	EP3_ Control (Set)
61h	EP3_Status	EP3_ Control (Clear)
70h	TotalCnt0	TotalCnt0
71h	TotalCnt1	TotalCnt1
72h	TotalCnt2	TotalCnt2
73h	TotalCnt3	TotalCnt3
74h	-	LoadTotalCnt
80h	GTotalCnt0	GTotalCnt0
81h	GTotalCnt1	GTotalCnt1
82h	GTotalCnt2	GTotalCnt2
83h	GTotalCnt3	GTotalCnt3

5.2 ATA Block: (address area: 40xx)

Address	Read Value	Write Value
90h	Data[7:0]	Data[7:0]
91h	Error	Features
92h	SectorCount	SectorCount
93h	SectorNumber	SectorNumber
94h	CyclinderLow	CylinderLow
95h	CylinderHigh	CylinderHigh
96h	Device/Head	Device/Head
97h	Status	Command
98h	Reserved	Reserved
99h	Reserved	reserved
9Ah	Reserved	reserved
9Bh	Reserved	reserved
9Ch	Reserved	reserved
9Dh	Reserved	reserved
9Eh	AlternateStatus	DeviceControl
9Fh	Reserved	reserved
A0h	FIFO0D[7:0]	FIFO0D[7:0]
A2h	sgPCtl	sgPCtl
A3h	FifoSt	FifoSt
A4h	gpioData	gpioData
A5h	gpioCtl	gpioCtl
A6h	TestCtl0	TestCtl0
A8h		
ACh	DrvCtl	DrvCtl
	upCtl MinaCtl	upCtl MissCtl (intermel testing)
AFh	MiscCtl	MiscCtl (internal testing)
B0h	LinkCtl	LinkCtl
B1h	DmaCtl	DmaCtl
B4h	sgDCtl	sgDCtl_Set
B5h	sgDCtl	sgDCtl_Clr
B6h	AtaCtl	AtaCtl
B7h	AtaStatus	AtaStatus
C0h,C2h-CEh	RData[7:0]	WData[7:0]
C1h,C3h-CFh	RData[15:8]	WData[15:8]
D6h	ATA_Status_Hi	ATA_Status_Hi
D7h	ATA_Status_Lo	ATA_Status_Lo
D8h	UsbINT_En	UsbINT_En
D9h	UsbINT_Status	UsbINT_Clr
E0h	I2C_Addr[7:0]	I2C_Addr[7:0]
E1h	I2C_Data	I2C_Data
E2h	I2C_Ctrl	I2C_Ctrl
E3h	I2C_Comm	I2C_Comm
E4h	I2C_Status	-
E8h	OTB_Counter[7:0]	OTB_Counter[7:0]
E9h	OTB_Ctrl[7:0]	OTB_Ctrl[7:0]
EAh	OTB_INT_En	OTB_INT_En

Note: 1. Every Read operation from any of 9Xh registers needs to be followed by another Read operation on C0h.

^{2.} Register C1h is used for accessing the high byte of 16-bit PIO data.

5.3 CMD/DATA Block: (address area: 40xx)

Address	Read Value	Write Value
100h-13Fh (64 bytes)	CmdRx0Buffer	Can not be written by CPU
140h-17Fh (64 bytes)	CmdRx1Buffer	Can not be written by CPU
1C0h-1EFh (64 bytes)	CmdTx1Buffer	CmdTx1Buffer
240h-26Fh (64 bytes)	CmdTx3Buffer	CmdTx3Buffer
280h-2AFh (64 bytes)	CmdTx4Buffer	CmdTx4Buffer

5.4 DMA Block: (address area: 40xx)

Address	Read Value	Write Value
500h-53Fh	sgList[3:0]	sgList[3:0]

5.5 Data Space Mapping

Mapping Address	Type	Access Type	Mapping Block
0000h-07FFh	Data	Read/Write	Internal SRAM (2KB)
4000h-47FFh	Data	Read/Write	Internal Register/Buffers
5000h-57FFh	Data	Read/Write	SgBuffer (2KB)
6000h-60FFh	Data	Read/Write	USB registers

6. Register Descriptions:

The following are USB registers, based on 0x6000

6.1.1 Device Status (Dev_Status[7:0], 0x20)

Field name	rscu	bit#	reset	
				Description
RSVD	r	7	1'b0	Reserved
Test_mode	rsu	6	1'b0	Set when SET_FEATURE (TEST_MODE). Exit by cycle VBUS.
Attach	ru	5	1'b1	Hardware reset default state. Clear if detect VBUS valid. Then set Power bit
Powered	ru	4	1'b0	Set if VBUS=1 & previous state is Attach. Or, power interruption.
Suspend	ru	3	1'b0	After bus IDLE for sometime, hardware set this bit. When RESUME detected, hardware reset this bit and return to previous state
Default	ru	2	1'b0	After bus reset, hardware set this bit.
Addressed	rscu	1	1'b0	Set_Address or Set_Configuration(0)
Configured	rscu	0	1'b0	Set_configuration

6.1.2 Function Address (Funct_Adr[7:0], 0x21)

Field name	rscu	bit #	reset	
				Description
RSVD	ru	7	1'b0	Reserved
Adr	ru	6:0	7'b0	Set_Address

6.1.3 Test Mode (Test_mode[7:0], 0x22)

Field name	rscu	bit #	reset	
				Description
RSVD	ru	7:4	4'b0	Reserved
Test_mode	rwu	3:0	4'b0	Test Mode Selectors(Table 9-7, USB2.0 spec) 4'h1: Test_J 4'h2: Test_K 4'h4: Test_SE0_NAK 4'h8: Test_Packet others: RSVD

6.1.4 End Point TX Data Length Low Bytes (Ep_TxLength[7:0], 0x25)

Field name	rscu	bit	reset	
		#		Description
Ep_TxLength	rwu	7:0	8'b0	For EP1 (Bulk_IN): For ATA-Command-no-DMA-involved, this field
				indicates how many bytes sent back to host. Maximum 512-bytes

6.1.5 End Point TX Data Length High Bytes (Ep_TxLength[15:8], 0x26)

Field name	rscu	bit	reset	
		#		Description
RSVD	r	7:2	6'b0	Reserved
Ep_TxLength	rwu	1:0	2'b0	High bytes

6.1.6 End Point 0 Status/Control (EP0_Status[7:0], 0x30: Set, 0x31: Clear)

Field name	rscu	bit	reset	
		#		Description
Suspend_gnt	rsc	7	1'b0	Suspend-request granted
Usb_busRst	rcu	6	1'b0	Set by hardware after an usb bus reset detected. Clear by firmware.
Bulk_only_Rst	rcu	5	1'b0	Set by hardware, read and cleared by firmware after firmware responds bulk-only-reset command done.
RSVD	ru	4:3	2'b0	Reserved
EP0_speed	ru	2	1'b0	1—HS, 0FS
Remote_wakeup	rscu	1	1'b0	Set/Clr by firmware. Remote wakeup request.
Halt	rscu	0	1'b0	1-EP0 halt. Function STALL. Device reset is require to clear this bit

6.1.7 End Point 0 Status/Control2 (EP1_Status2[7:0], 0x32: Set, 0x33: Clear, Bulk-IN)

Field name	rscu	bit #	reset	
				Description
FW_RDY	rsc	7	1'b0	0: Default value as no firmware installed. Hardware response all control packet for firmware download in most case.
				1: Firmware controls some setup packet response.
RSVD	r	6:4	3'b0	Reserved
EP0_StatRun	rsu	3	1'b0	Set by firmware if device ready to go to control status stage.
EP0_OUT	rcu	2	1'b0	Set by hardware if a control command-data is received. Clear by firmware after processing.
EP0_Run	rsu	1	1'b0	Set by firmware. When firmware set this bit, the data will be transferred from data buffer to USB. How many bytes transferred is based on the data transfer length in the Ep_TxLength(0x25, 0x26)
EP0_Setup	rcu	0	1'b0	Set by hardware if a control command is received. Clear by firmware after processing.

6.1.8 End Point TX Data Length Low Bytes (Ep0TxLength[7:0], 0x34)

Field name	rscu	bit	reset	
		#		Description
RSVD	r	7	1'b0	Reserved
Ep0TxLength	rwu	6:0	7'b0	For EP0 (Control): This field is filled by firmware. When firmware taking control setup packet response, firmware write this field to inform hardware the data length to be send back to host. Maximum 64-bytes.

6.1.9 Setup Packet (Hdr0—Hdr7[7:0], 0x38—0x3F)

Field name	rscu	bit	reset	
		#		Description
Hdr	ru	7:0	8'bx	8 bytes setup packet.

6.1.10 End Point 1 Status/Control (EP1_Status[7:0], 0x40: Set, 0x41: Clear, Bulk-IN)

Field name	rscu	bit #	reset	
				Description
GTotalCntEq 0	r	7	0	1-> Ata Global TotalCnt equ 0 0-> else
TotalCntEq0	r	7	0	1-> Ata TotalCnt equ 0 0-> else
Short_IN	r	5	1'b0	1-> the last sent packet is a short packet. For bulk-in packet only
RSVD	r	4	1'b0	Reserved
CSW_Run	rscu	3	1'b0	Set by firmware when firmware ready to send CSW. Clear by hardware after CSW is sent successfully.
RSVD	r	2	1'b0	Reserved

EP1_Run	rscu	1	1'b0	Set by firmware. When firmware set this bit, the data will be transferred from data buffer to USB. How many bytes transferred is based on the data transfer length in the Ep_TxLength(0x25, 0x26)
Halt	rscu	0	1'b0	1-EP1 halt.

6.1.11 End Point 2 Status/Control (EP2_Status[7:0], 0x50: Set, 0x51 Clear, Bulk-OUT)

Field name	rscu	bit #	reset	
				Description
FS_En	rw	7	1'b0	1-> force device to Full Speed mode only
RSVD	r	6	1'b0	Reserved
Short_OUT	r	5	1'b0	1-> the last received packet is a short packet. For bulk-out packet only
RX_DONE	rsc	4	2'b0	1->brdge received all data from host. Ready for CSW transmit. Auto-clear after Rxed CBW
RX_2K	rsc	3	1'b0	1-> bridge Rxed 2K bytes. Auto-clear after Rxed CBW
EP2_Rx	rcu	2	1'b0	Set by hardware after the bulk out packet received. The number of total data length received will be shown in Usb_rxLength register. This bit is used by firmware to monitor the data transfer between USB and internal data buffer. This bit is cleared by firmware or automatically cleared by hardware after the next CBW received or sg0Run bit set by firmware.
EP2_CBW	rcu	1	1'b0	Set by hardware if a valid CBW received. Clear after processing by firmware.
Halt	rscu	0	1'b0	1-EP2 halt.

6.1.12 Usb_rxLength(usb_rxLength[7:0], 0x52, Bulk-OUT)

Field name	rscu	bit #	reset	
				Description
rxLength	rwu	7:0	8'b0	The low byte of data length received. This register is used to show how many date received from USB to internal data buffer.

6.1.13 Usb_rxLength(usb_rxLength[15:8], 0x53, Bulk-OUT)

Field name	rscu	bit #	reset	
				Description
rxLength	rwu	7:0	8'b0	The high byte of data length received. This register is used by firmware to show how many data received from USB to internal data buffer.

6.1.14 End Point 3 Status/Control (EP3_Status[7:0], 0x60: Set, 0x61: Clear, INTR-IN)

Field name	rscu	bit #	reset	
				Description
RSVD	r	7:3	5'b0	Reserved
EP3_run	rsu	2	1'b0	1—packet ready. Cleared by hardware after Tx completed
RSVD	r	1	1'b0	Reserved

1	Halt	rscu	0	1'b0	1-EP3 halt.
	Tiuit	1504	U	1 00	1 El 3 hait.

6.1.15 End Point TX Data Length Low Bytes (Ep3TxLength[7:0], 0x62)

Field name	rscu	bit	reset	
		#		Description
RSVD	r	7	1'b0	Reserved
Ep3TxLength	rwu	6:0	7'b0	For EP3 (INT_IN): This field is filled by firmware. Firmware writes this field to inform hardware the data length to be sent back to host. Maximum 64-bytes.

6.1.16 Total Count0 (TotalCnt[7:0], 0x70 TotalCnt0)

Field name	rscu	bit #	reset	
				Description
TotalCnt0	rwu	7-0	8'b0	TotalCnt[7:0]

6.1.17 Total Count1 (TotalCnt[15:8], 0x71 TotalCnt1)

Field name	rscu	bit #	reset	
				Description
TotalCnt1	rwu	7-0	8'b0	TotalCnt[15:8]

6.1.18 Total Count2 (TotalCnt[23:16], 0x72 TotalCnt2)

Ī	Field name	rscu	bit #	reset	
					Description
Ī	TotalCnt2	rwu	7-0	8'b0	TotalCnt[23:16]

6.1.19 Total Count3 (TotalCnt[31:24], 0x73 TotalCnt3)

Field name	rscu	bit #	reset	
				Description
TotalCnt3	rwu	7-0	8'b0	TotalCnt[31:24]

6.1.20 Load Total Count (Load TotalCnt, 0x74)

Field name	rscu	bit #	reset	
				Description
Reserved	r	7-1	7'b0	Reserved
LoadTotalCnt	w	0	1'b0	Write an 1 to this bit will re-load the value from register 0x73-0x70's TotalCnt[31:0] to internal counter.

6.1.21 Global Total Count0 (GTotalCnt[7:0], 0x80 GTotalCnt0)

Field name	rscu	bit #	reset	
				Description
GTotalCnt0	rwu	7-0	8'b0	GTotalCnt[7:0]

6.1.22 Global Total Count1 (GTotalCnt[15:8], 0x81 GTotalCnt1)

Field name	rscu	bit #	reset	
				Description
GTotalCnt1	rwu	7-0	8'b0	GTotalCnt[15:8]

6.1.23 Global Total Count2 (GTotalCnt[23:16], 0x82 GTotalCnt2)

Field name	rscu	bit #	reset	
				Description
GTotalCnt2	rwu	7-0	8'b0	GTotalCnt[23:16]

6.1.24 Global Total Count3 (GTotalCnt[31:24], 0x83 GTotalCnt3)

Field name	rscu	bit #	reset	
				Description
GTotalCnt3	rwu	7-0	8'b0	GTotalCnt[31:24]

The following are general registers, and are in address area: 40XX

6.2.1 FIFO 0 Data Register (FIFO0D[7:0], 0x0A0)

Field name	rscu	bit #	reset	
				Description
Fifo0Data	rw	7:0	8'h0	DMA FIFO 0 Data register. Software can access DMA FIFO 0 through this register.

6.2.2 sgPioCmd Control Register (sgPCtl, 0x0A2)

Field name	rscu	bit#	reset	
				Description
Reserved	r	7-1	6'b0	Reserved.
Pio0Run	rw	0	1'b0	After set. Before set this bit, the firmware needs to disable AtaDMAEn bit on DMA Control register, write the package header into the segment of sgCMD buffer, set RUN bit on sgCMD Control register, and fill data into FIFO data register.

6.2.3 FIFO Status Register (FifoST, 0x0A3)

Field name	rscu	bit#	reset	Description
Reserved	r	7-1	6'b0	Reserved.
Fifo0Rst	rw	0	1'b0	DMA FIFO 0 Reset. This bit is used to reset DMA FIFO 0. This bit is self-
				cleared by hardware after set.

6.2.4 GPIO Data Register (gpioDATA, 0x0A4)

Field name	rscu	bit #	reset	Description	
VBUS	r	7	1'b0	Read: USB's VBUS status	
AtaRST0#	w	6	1'b1	ATA channel 0 reset signal. When clear, it will reset the ATA device.	
GPIOD[5:0]	rw	5-0	6'h0	Write: GPIOOut[5:0], Read: GPIOIn[5:0]	

6.2.5 GPIO Control Register (gpioCtl, 0x0A5)

Field name	rscu	bit #	reset	Description	
GPIOEn	rw	7	1'b0	GPIO mode enable.	
Reserved	r	6	1'b0	Reserved.	
GPIOCtl[5:0]	rw	5-0	6'h0	General Purpose I/O Control 5-0. When set, the GPIO data is output.	

6.2.6 Test Control 0 Register (TestCtl0, 0x0A6)

Field name	rscu	bit #	reset	Description	
RstAtareq_	rw	7	1'b0	At a request reset. When set, it will reset the current At a request.	
Reserved	rw	6:4	3'b0	Reserved.	
RevID	r	3:0	4'h0	Revision ID. These 4 bits are read only.	

6.2.7 ATA I/O Cell Driving Control Register (DrvCtl, 0x0A8)

Field name	rscu	bit #	reset	Description	
CFEn	rw	7	1'b0	Compact Flash Mode Enable. When set, the ATA engine will run in pseudo	
				DMA mode enabling fast compact flash access.	
CFReq	rw	6	1'b0	Compact Flash Request. When set, it indicates to the ATA engine that	
				compact flash has requested data transfer.	
Reserved	r	5-3	4'h0	Reserved.	
AtaTSEn	rw	2	1'b0	0 ATA Bus Tristate Enable. Clear this bit to 0 will put the INI1430 ATA bus in	
				tristate mode.	
DrvSel	rw	1-0	2'h3	ATA Output Driving:	
				00: 8 mA	
				01: 10 mA	
				10: 12 mA	
				11: 16 mA	

6.2.8 uP Control Register (upCtl. 0x0AC)

0.2.0 41 0		11051	eu, 0110112)		
Field name	rscu	bit #	reset	Description	
Reserved	r	7-2	6'b0	Reserved.	
usbWakeupEn	rw	1	1'b0	1-> enable external interrupt wake up host	
Reserved	r	0	1'b0	Reserved.	

6.2.9 MiscCtl register (0x0AF)

0.2.5	8-200-	(022022	- /	
Field name	rscu	bit #	reset	Description
Reserved	rw	7	1'b0	Reserved.
NewMode	rw	6	1'b0	0: inic1530 mode
				1: enhance mode
Set_usbClkEn	rw	5	1'b0	1: usb clock free run
Enum	rw	4	1'b1	0: disconnect device from usb host
HidEn	rw	3	1'b0	0: endp will be IN(1)OUT(2)INTR(3)
				1: endp will be IN(8)OUT(2)INTR(1)
Reserved	rw	2	3'b0	Reserved.

OUT_ABORT_En	rw	1	1'b0	1->wait all data sent from host done.
CSW_ACK_En	rw	0	1'b0	1-> Fw don't have to do the following things after CSW sent,
				* write totalCnt to 0
				*set Flush

6.2.10 sgCmd Definition

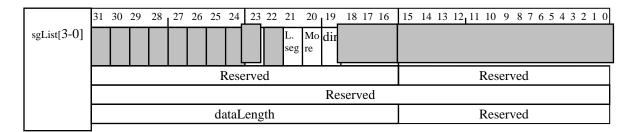


Figure 2: sgCmd format

Field name	width	quadlet	Bit #	Description
L. seg	1	1	21	If the command is the last one of S/G segments, this bit should be
				set by firmware.
More	1	1	20	If the number of commands in SgCmd buffer is more than one, this bit should be set by firmware.
Dir	1	1	19	When 0, the DMA data are transferred from P1394 bus to ATA device. When 1, the DMA data are transferred from ATA device to P1394 bus.

6.2.11 Link Control Register (linkCtl, 0x0B0)

Field name	rscu	bit #	reset	Description	
Reserved	r	7-2	6'b0	Reserved.	
HW_RESET	w	1	1'b0	b0 1->Reset whole chip. Function same as RC_RESET pin. Auto clear by hardware.	
softReset	rwu	0	1'b0	When set to 1, all Host Controller state is reset, all FIFO's are flushed, and Host Controller registers is reset. The read value of this bit is 1 while a soft reset or hard reset is in progress. The read value of this bit is 1 when neither soft reset nor hard reset is in progress. Software can use the value of his bit to determine when a reset has completed and the Host Controller is safe to operate.	

6.2.12 DMA Control register (DmaCtl, 0x0B1)

Field name	rscu	bit#	reset	Description
Reserved	r	7-4	1'h0	Reserved.
DIOW#	rw	3	1'b1	When DMA FIFO is underrun, this bit is used by firmware to toggle DIOW# signal.
DIOR#	rw	2	1'b1	When DMA FIFO is underrun, this bit is used by firmware to toggle DIOR# signal.
DMACK#	rw	1	1'b1	When DMA FIFO is underrun, this bit is used by firmware to toggle DMACK# signal.
Flush/Abort	rw	0	1'b0	When DMA FIFO is overrun, this bit is used by firmware to flush data

	out for outgoing data or abort the DMA operation for incoming data.
	This bit is self-cleared by hardware.

6.2.13 Channel Clear Register (cmdCtl_Clr, 0x0B3)

Field name	rscu	bit #	reset	Description
Reserved	r	7	7'b0	Reserved
CmdTx4Run	rwu	6	1'b0	When the Clear register is set by software, the corresponding channel is
(for HID_out)				cleared.
CmdTx3Run	rwu	5	1'b0	When the Clear register is set by software, the corresponding channel is
(for CSW_out)				cleared.
Reserved	r	4	1'b0	Reserved
CmdTx1Run	rwu	3	1'b0	When the Clear register is set by software, the corresponding channel is
(for Control_out)				cleared.
Reserved	r	2	1'b0	Reserved
CmdTx1Run	rwu	1	1'b0	When the Clear register is set by software, the corresponding channel is
(for CBW)				cleared.
CmdTx1Run	rwu	0	1'b0	When the Clear register is set by software, the corresponding channel is
(for Setup-Packet)				cleared.

6.2.14 sgDma Control Register (sgCtl_Set, 0x0B4) (sgCtl_Clr, 0x0B5)

Field name	rscu	bit#	reset	Description
Reserved	r	7:1	7'b0	Reserved.
Sg0Run	rwu	0	1'b0	When Set register is set by software, the corresponding channel is ready to be transmitted. The hardware clears these bits when the transfer is completed. Software can set bit[3:0] on Clear register to clear the corresponding bit. When Clear register is written by software, the DMA channels will be reset to idle. (USB bulk transfer will only use sg0Run)

6.2.15 ATA Control register (AtaCtl, 0x0B6)

Field name	rscu	bit#	reset	Description
AtaDMAEn	rw	7	1'b1	When 1, ataDMA is enabled.
pioReq/pioGnt	rw	6	1'b0	Write 1 for PIO request. PIO grant status when read.
dmaMode	rw	5	1'b0	0-2: DMA mode 0 - 2
	rw	4	1'b0	4-7: UDMA mode 2, 3, 4 and 5 (up to uDMA100)
	rw	3	1'b0	
pioMode	rw	2	1'b0	0-4: PIO mode 0-4
	rw	1	1'b0	
	rwu	0	1'b0	

6.2.16 ATA Control/Status register (ataStatus, 0x0B7)

Field name	rscu	bit#	reset	Description	
Reserved	r	7	1'b0		
AtaCh0En	rw	6	1'b0	Ata Channel Enable.	
PioXEn	rw	5	1'b0 PIO transfer engine enable. When set, the PIO engine will transfer		
				to/from the ATA bus using PIO transfer mechanism.	

Reserved	r	4:3	2'b0	Reserved.	
AtaIORDY0	<u>ru</u>	2	1'bx	Ata channel IORDY line.	
Reserved	r	1	1'b0	Reserved	
AtaINTRQ0	ru	0	1'bx	Ata channel INTRQ line.	

6.2.17 ATA_Status_Low Register (0x0D6)

Field name	rscu	bit #	reset	Description
ATA_Status[7:0]	rw	7-0	8'h0	CPU writes the ATA status to this register

6.2.18 ATA_Status_High Register (0x0D7)

Field name	rscu	bit #	reset	Description
ATA_Status[15:8]	rw	7-0	8'h0	CPU writes the ATA status to this register

6.2.19 usb INT Enable Register (0x0D8)

Field name	rscu	bit #	reset	Description
Usb_busRst_INT_Er	rw	7	1'b0	1: Enable Usb_busRst to trigger sysINT.
Usb_bulkOnlyRst_IN	rw	6	1'b0	1: Enable Usb_bulkOnlyRst to trigger sysINT.
Usb_Ep0Req_INT_E	rw	5	1'b0	1: Enable Usb_ Ep0Req to trigger sysINT.
Usb_CBW_INT_En	rw	4	1'b0	1: Enable Usb_CBW to trigger sysINT.
Usb_wakeup_INT_E	rw	3	1'b0	1: Enable Usb_wakeup to trigger sysINT.
Usb_suspendINT_Er	rw	2	1'b0	1: Enable Usb_suspend to trigger sysINT.
VBUS_P_INT_En	rw	1	1'b0	1: Enable positive of VBUS to trigger sysINT.
VBUS_NINT_En	rw	0	1'b0	1: Enable negative of VBUS to trigger sysINT.

6.2.20 usb INT Status/Clear Register (0x0D9)

0.2.20 usb_1111_5tat	cub/ Cit	ui itt	Sister	(UAUD))
Field name	rscu	bit #	reset	Description
Usb_busRst	rw	7	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
Usb_bulkOnlyRst	rw	6	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit.
Usb_Ep0Req	rw	5	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
Usb_CBW	rw	4	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
Usb_wakeup	rw	3	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
Usb_suspend	rw	2	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
VBUS_PINT	rw	1	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit
VBUS_NINT	rw	0	1'b0	Read: 1: indicates this interrupt event occurred Write 1: will clear this status bit

6.2.21 I2C_Addr Register (0x0E0)

Field name	rscu	bit #	reset	Description
I2C_Addr	rw	7-0	8'h0	CPU writes the to-be executed NVRAM address to this
				register.

6.2.22 I2C_Data Register (0x0E1) (I2C Data port)

oizizz izo_butu ito	5-000-	(02202	, (C Butu port)
Field name	rscu	bit #	reset	Description
I2C_Data	rw	7-0	8'h0	This is the data port for CPU to access NVRAM
				A: To Write to NVRAM: CPU Writes a 8-bit data to this port, Hardware will send this data to NVRAM
				B: To Read from NVRAM:
				CPU reads this port to get data from NVRAM

6.2.23 I2C_Ctrl Register (0x0E2) (I2C Control Code)

Field name	rscu	bit #	reset	Description
Reserved	w	7	1'b0	reserved
Control_Code	rw	6:3	4'b0	Control Code
Block_Select	rw	2:0	3'b0	I2C device block select bits

6.2.24 I2C_COMM Register (0x0E3)

Field name	rscu	bit #	reset	Description
I2C_TX_START	rw	7	1'b0	1-> Hardware start to Read/Write NVRAM. Clear by hardware when finished.
reserved	rw	6:1	6'b0	reserved
Rd_nWr	wr	0	1'b0	0-> write to NVRAM 1-> read data from NVRAM

6.2.25 I2C_Status Register (0x0E4)

Field name	rscu	bit	reset	Description
		#		
reserved	rw	7-3	5'b0	reserved
Data Ack	ta Ack r 0 1'b0 0-> NVR		1'b0	0-> NVRAM ACK with Data write phase
				1->NVRAM NACK with Data write phase
Addr Ack	r	0	1'b0	0-> NVRAM ACK with Address write phase
				1->NVRAM NACK with Address write phase
Ctrl Ack	r 0 1'b0 0-> NVRAM ACK with Contrl Code write pha		0-> NVRAM ACK with Contrl Code write phase	
				1->NVRAM NACK with Contrl Code write phase

6.2.26 OTB_Counter Register (0x0E8)

Field name	rscu	bit #	reset	Description
OTB_Counter	rw	7:0	8'b0	How many push-release done. Clear after FW read.

6.2.27 OTB_Ctrl Register (0x0E9)

OLLIZATION OLD_CHILLO	5-00-	(0220		
Field name	rscu	bit #	reset	Description
P1_4_OTB_en	rw	7:6	2'b0	00->I2C mode 01->OTB mode 1x->I2C_SCL as P3_3, I2C_SDA as P1_4
reserved	rw	6:3	5'b0	reserved
Debouncing time	rw	1:0	2'b0	2'b00-> 36ms 2'b01->72ms 2'b10->108ms 2'b11->144ms

6.2.28 OTB_INT_Enable Register (0x0EA)

Field name	rscu	bit #	reset	Description
OTB_Counter_INTE	rw	7	1'b0	1: Enable OTB_Counter<>0 trigger sysINT.
OTB_pos_INTE	rw	6	1'b0	1: Enable button RELEASE trigger sysINT
OTB_neg_INTE	rw	5	1'b0	1: Enable button PUSH trigger sysINT
reserved	rw	4:0	5'b0	reserved

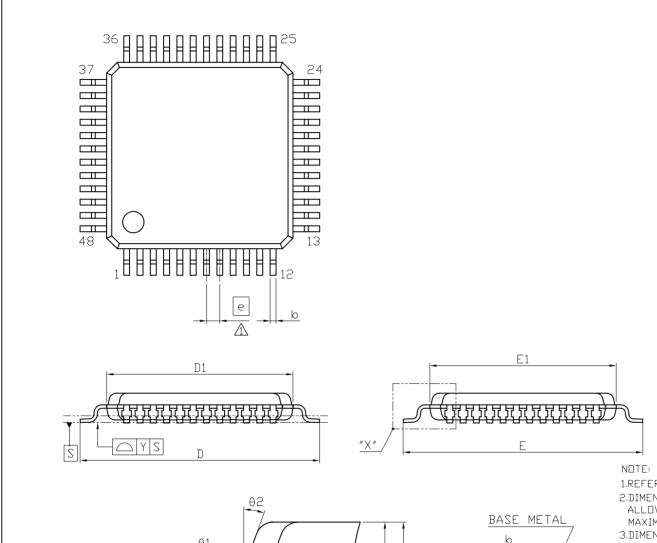
7. Electrical Information:

7.1 Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Units
Vcc	Power Supply	-0.3	3.6	V
Vin	Input Voltage	-0.3	Vcc+0.3	V
Vout	Output Voltage	-0.3	Vcc+0.3	V
Tstg	Storage Temperature	-55	150	°C

7.2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
Vcc	Power Supply	3.0	3.3	3.6	V
Vin	Input Voltage	0	-	Vcc	V
Tj	Commercial Junction Operating Temperature	0	25	115	°C
	Industrial Junction Operation Temperature	-40	25	125	°C


7.3 General DC Characteristics

Symbol	Parameter	Min	Тур	Max	Units
Iil	Input Leakage Current	-1		1	μΑ
Ioz	Tristate Leakage Current	-1		1	μΑ
Cin	Input Capacitance		2.8		pF
Cout	Output Capacitance	2.7		4.9	pF
Cbid	Bi-directional Buffer Capacitance	2.7		4.9	pF

7.4 DC Electrical Characteristics for 3.3V Operation

(Under Vcc=3.0-3.6V, Tj=0-115C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vil	Input Low Voltage	CMOS			0.3*Vcc	V
		CMOS Schmitt		1.20	0.3*Vcc	V
		Trigger				
Vih	Input High Voltage	CMOS	0.7*Vcc			V
		CMOS Schmitt		2.10		V
		Trigger				
Vol	Output Low Voltage	Ioh-2-24mA			0.4	V
Voh	Output High Voltage	Ioh=2-24mA	2.4			V
Ri	Input Pullup/pulldown Resistance	Vil=0/Vih=Vcc		75		kΩ
Icc	Operating Supply Current	Vcc=3.3V		40	60	mA

R1

θ3

Detail "X"

GAGE PLANE

∢

SEATING PLANE

b1

SECTION A-A

WITH PLATING

	SYMBOL.	DI	MENSION (MM)	1	DIMENSION (MIL)			
	STYDUL	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
	Α			1.60			63	
	A1	0.05		0.15	۵		6	
	A2	1.35	1.40	1.45	53	55	57	
	b	0.17	0.22	0.27	7	9	11	
	b1	0.17	0.20	0.23	7	8	12	
	С	0.09		0.20	4		8	
	c 1	0.09		0.16	4		6	
	D		9.00 BS	С	354 BSC			
	D1		7.00 BS	С	276 BSC			
	E		9.00 BS	С	354 BSC			
	E1		7.00 BS	С	276 BSC			
1	e	0.35	0.50	0.65	14	20	26	
	L	0.45	0.60	0.75	18	24	30	
	L1		1.00 REF		39 REF			
	R1	80.0			3			
	R2	0.08		0.20	3		8	
	Υ			0,075			3	
	θ	0*	3.5*	7 °	0*	3.5*	7°	
	θ1	0*			0°			
	θ2	11*	12°	13°	11*	12*	13*	
	θ3	11°	12°	13°	11 °	12°	13*	

1.REFER TO JEDEC MS-026/BBC

2.DIMENSION D1 AND E1 D0 NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PER SIDE D1 AND E1 ARE
MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.

3.DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM 6 DIMENSION BY MORE THAN 0.08mm.

4.ALL DIMENSIONS IN MILLIMETERS.

1 5. Remark: Modify [8]

17	D.Kem	arkı	Modity [e] .						
					PKG. CODE DRAWING NUMBE			ΞR	REV.
									4
	SIZE	A3	BY	DATE	TITLE]	LQFP48 (7:	√7133)		
	DRAWN		2005. 09. 06	PACKAGE OUILINE					
	DESIGNED]]	Footprint	2. Omn			
	CHECKED			SCALE	10:1	PROJ.	ф г	$\overline{}$	
	APPROVED		PPROVED		SHEET	1 OF 1] [[[]]	T W	