


Pin 1 – Ground Pin 2 – V_{OUT} Case – V_{IN}

K Package - TO-3

 $\begin{aligned} &\text{Pin 1} - \text{Ground} \\ &\text{Pin 2} - \text{V}_{\text{IN}} \\ &\text{Pin 3} - \text{V}_{\text{OUT}} \\ &\text{Case} - \text{V}_{\text{IN}} \end{aligned}$

V Package - TO-218

5 AMP FIXED NEGATIVE VOLTAGE REGULATORS

FEATURES

- 0.01%/V LINE REGULATION
- 0.5% LOAD REGULATION
- ±1% OUTPUT TOLERANCE (-A VERSIONS)
- AVAILABLE IN -5V, -12V AND -15V OPTIONS
- COMPLETE SERIES OF PROTECTIONS:
 - CURRENT LIMITING
 - THERMAL SHUTDOWN
 - SOA CONTROL

Order Information

Part	K-Pack	V–Pack	Temp.					
Number	(TO-3)	(TO-218)	Range					
IP1R19Axx-zz	~	-55 to +150°C						
IP1R19xx-zz	~		"					
IP3R19Azz-xx	/	~	0 to +125°C					
IP3R19zz-xx	✓	~ "						
Note:								
xx = Voltage Co (05, 12, 15 eg.		zz = Package Code (K, V)						
IP1R19AK-	-05	IP3R1	19V–12					

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{I}	DC Input Voltage	35V
P_{D}	Power Dissipation	Internally limited
T_J	Operating Junction Temperature Range	See Table Above
T_{STG}	Storage Temperature Range	−65°C to +150°C
T_L	Lead Temperature (Soldering, 10 sec)	300°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated)

					IP1R19A-05 IP3R19A-05			IP1R19-05 IP3R19-05			
Parameter		Test Conditions ²		Min.	Typ.	Max.	Min.	Typ.	Max.	Units	
				-5.05	-5	-4.95	-5.15	-5	-4.85	V	
	Output Vallage	$I_O = -5$ mA to -5A									
Vo	Output Voltage	P ≤ 50W	$V_{IN} = -8V$ to $-20V$	-5.15		-4.85	-5.25		-4.75	V	
		$T_J = Over Ter$	np. Range ¹								
ΔV_{O}	Line Degulation	$V_{IN} = -7.5V \text{ to}$	-35V		3	15		6	30	mV	
ΔV_{I}	Line Regulation	$I_{O} = -5 \text{mA}^{3}$	T _J = Over Temp. Range ¹		6	30		12	60	IIIV	
ΔV_{O}	Load Regulation	$I_O = -5$ mA to -	5A ³		5	25		10	50	201/	
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹		10	50		20	100	mV	
IQ	Quiescent Current	$I_O = -5mA$	T _J = Over Temp. Range ¹			5			5	mA	
		$I_O = -5$ mA to -	5A	10				10			
 	Quiescent Current	$T_J = Over Ter$	np. Range ¹					10			
ΔI_{Q}	Change	I _O = -5mA	$V_{IN} = -7.5V \text{ to } -35V$			-			F	mA mA	
		$T_J = Over Ter$	np. Range ¹		5				5		
.,	Dropout Voltage	I _O = -5A	$\Delta V_{OUT} = 100 \text{mV}$		2.2	3		2.2	3	V	
V_D		$T_J = Over Ter$	np. Range ¹			3					
	Pinnla Paination	I _O = -1A	f = 120Hz	60	60 80		60	80		dB	
	Ripple Rejection	$T_J = Over Ter$	np. Range ¹	00							
	Thermal Regulation	t _p = 20ms	$\Delta P = 50W$		0.002	0.01		0.002	0.02	%/W	
I _{PEAK}	Peak Output Current	V _{IN} = -10V	T _J = Over Temp. Range ¹	-12	-8		-12	-8		Α	
	Short Circuit Current	V _{IN} = -10V		-7 -2			-7				
I _{SC}		V _{IN} = -35V						-2		A	
e _n	Output Noise Voltage	f = 10Hz to 10	00kHz		40			40		μV	
	Thermal Resistance	K Package			1.0	1.5		1.0	1.5	0000	
$R_{\theta JC}$	Junction to Case	V Package			1.5		1.0	1.5	°C/W		

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R19A} - 05 / \text{IP1R19} - 05$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R19A} -05 / \text{IP3R19} -05$

All other specifications apply at $T_C = 25$ °C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -10V$, $I_{OUT} = -2.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

				IP1R19A-12 IP3R19A-12			IP IP				
Parameter		Test Conditions ²		Min.	Тур.	Max.	Min.	Тур.	Max.	Units	
				-12.12	-12	-11.88	-12.36	-12	-11.64	V	
.,	Outrout Valtage	I _O = -5mA to -5A									
Vo	Output Voltage	P ≤ 50W	$V_{IN} = -15V \text{ to } -27V$	-12.36		-11.64	-12.60		-11.40	V	
		$T_J = Over Ten$	np. Range ¹								
ΔV_{O}	Line Demoleties	$V_{IN} = -14.5V t$	o -35V		5	30		10	60	>/	
ΔV_{I}	Line Regulation	$I_{O} = -5 \text{mA}^{3}$	T _J = Over Temp. Range ¹		10	60		20	120	⊢ mV	
ΔV _O	Land Danielation	$I_O = -5mA$ to -	5A ³		10 60			20	120	mV	
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹	20 120		120		40	240		
IQ	Quiescent Current	I _O = -5mA	T _J = Over Temp. Range ¹			5			5	mA	
		$I_O = -5mA$ to -	5A	10				40			
	Quiescent Current	$T_J = Over Ten$	np. Range ¹					10	^		
ΔI_{Q}	Change	I _O = -5mA	$V_{IN} = -14.5V \text{ to } -35V$		5	F	F		F	mA	
		T _J = Over Ten	np. Range ¹		5				5		
\/	Dropout Voltage	I _O = -5A	$\Delta V_{OUT} = 250 \text{mV}$		2.2 3	2		2.2	3	V	
V_D		$T_J = Over Ten$	np. Range ¹			3		2.2	3		
	Pipple Paination	I _O = -1A	f = 120Hz	52	2 72		52	72		dB	
	Ripple Rejection	T _J = Over Ten	np. Range ¹	32							
	Thermal Regulation	t _p = 20ms	$\Delta P = 50W$		0.002	0.01		0.002	0.02	%/W	
I _{PEAK}	Peak Output Current	V _{IN} = -17V	T _J = Over Temp. Range ¹	-12	-8		-12	-8		Α	
	Short Circuit Current	V _{IN} = -17V		-4			-4				
I _{SC}		V _{IN} = -35V			-2			-2		A	
e _n	Output Noise Voltage	f = 10Hz to 10	00kHz		75			75		μV	
В	Thermal Resistance	K Package			1.0	1.5		1.0	1.5	°C/\\	
$R_{\theta JC}$	Junction to Case	V Package			1.0	1.5		1.0	1.5	°C/W	

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R19A} - 12 / \text{IP1R19} - 12$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R19A} -12 / \text{IP3R19} -12$


All other specifications apply at T_C = 25°C unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -17V$, $I_{OUT} = -2.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

		IP1R19A-15 IP3R19A-15			IP						
Parameter		Test Conditions ²		Min.	Typ.	Max.	Min.	3R19– Typ.	Max.	Units	
T di dillotoi		1 oot oonan	0110	-15.15	-15	-14.85		-15	-14.55	V	
	Output Voltage	$I_O = -5$ mA to -	5A	10.10		1 1.00	10.10		1 1.00	•	
Vo		P _{OUT} ≤ 50W	$V_{IN} = -18V \text{ to } -30V$	-15.45		-14.55	-15.75		-14.25	V	
		$T_J = Over Ter$	np. Range ¹								
ΔV_{O}	1: B 1:	$V_{IN} = -17.5V t$	o -35V		8	40		16	80		
ΔV_{I}	Line Regulation	$I_{O} = -5 \text{mA}^{3}$	T _J = Over Temp. Range ¹		16	80		32	160	mV	
ΔV_{O}	Lood Dogulation	$I_O = -5mA$ to -	5A ³		16	80		32	160	.,	
ΔI_{O}	Load Regulation		T _J = Over Temp. Range ¹		32	160		64	320	mV	
IQ	Quiescent Current	I _O = -5mA	T _J = Over Temp. Range ¹			5			5	mA	
		$I_O = -5mA$ to -	5A	10				10			
, ,	Quiescent Current Change	$T_J = Over Ter$	np. Range ¹					10			
ΔI_Q		I _O = -5mA	$V_{IN} = -17.5V \text{ to } -35V$			E			E	mA	
		$T_J = Over Ter$	np. Range ¹		5				5		
\ <u></u>	Dropout Voltage	I _O = -5A	$\Delta V_{OUT} = 300 \text{mV}$		2.2 3	2		2.2	3	V	
V _D		$T_J = Over Ter$	np. Range ¹			3		2.2	3	\ \ \	
	Ripple Rejection	I _O = -1A	f = 120Hz	50	50 70		50	70		dB	
	Rippie Rejection	$T_J = Over Ter$	np. Range ¹	50 70			30	70		ub	
	Thermal Regulation	t _p = 20ms	$\Delta P = 50W$		0.002	0.01		0.002	0.02	%/W	
I _{PEAK}	Peak Output Current	V _{IN} = -20V	T _J = Over Temp. Range ¹	-12	-8		-12	-8		Α	
	Short Circuit Current	V _{IN} = -20V		-3.5 -2				-3.5		Α	
I _{SC}		V _{IN} = -35V						-2			
e _n	Output Noise Voltage	f = 10Hz to 10)kHz		90			90		μV	
Ь	Thermal Resistance	K Package			1.0	1.5		1.0	1.5	°C/W	
$R_{\theta JC}$	Junction to Case	V Package			1.0	1.5		1.0	1.5	C/VV	

Notes

1) Applies over full temperature range:-

 $T_J = -55 \text{ to } +150^{\circ}\text{C for IP1R19A} -15 / \text{IP1R19} -15$

 $T_J = 0 \text{ to } +125^{\circ}\text{C for IP3R19A} -15 / \text{IP3R19} -15$

All other specifications apply at $T_C = 25^{\circ}C$ unless otherwise stated.

2) Test conditions unless otherwise stated:-

 $V_{IN} = -20V$, $I_{OUT} = -2.5A$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.