New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRF610-613 MTP2N18/2N20 N-Channel Power MOSFETs, 3.5 A, 150-200 V

Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid drivers and other pulse circuits.

- Low R_{DS(on)} V_{GS} Rated at ± 20 V
- · Silicon Gate for Fast Switching Speeds
- IDSS, VDS(on), Specified at Elevated Temperature
- Rugged
- Low Drive Requirements
- Ease of Paralleling

IRF610 IRF611 IRF612 IRF613 MTP2N18

MTP2N20

TO-220AB

Maximum	Rat	ings
---------	-----	------

Symbol	Characteristic	Rating IRF610/612 MTP2N20	Rating MTP2N18	Rating IRF611/613	Unit
VDSS	Drain to Source Voltage ¹	200	180	150	٧
VDGR	Drain to Gate Voltage ¹ R _{GS} = 20 kΩ	200	180	150	V
V _{GS}	Gate to Source Voltage	± 20	± 20	± 20	V
Tj, T _{stg}	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	275	

Maximum On-State Characteristics

		IRF610/611	MTP2N18/20	IRF612/613	
R _{DS(on)}	Static Drain-to-Source On Resistance	1.5	1.8	2.4	Ω
l _D	Drain Current Continuous at T _C = 25°C Continuous at T _C = 100°C Pulsed	2.5 1.5 10	3.25 2.25 9.0	2.0 1.25 8.0	A
Maximum	Thermal Characteristics				
Rajc	Thermal Resistance, Junction to Case	6.4	2.5	6.4	°C/W
R _{ØJA}	Thermal Resistance, Junction to Ambient	80	80	80	°C/W
PD	Total Power Dissipation at T _C = 25°C	20	50	20	w

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRF610-613 MTP2N18/2N20

,

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics					
V(BR)DSS	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 V, I_D = 250 \mu A$	
	IRF610/612/MTP2N20	200				
	MTP2N18	180				
	IRF611/613	150				
IDSS	Zero Gate Voltage Drain Current		250	μA	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
			1000	μA	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, T_C = 125^{\circ}\text{C}$	
IGSS	Gate-Body Leakage Current		± 500	nA	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	
on Charact	teristics					
V _{GS(th)}	Gate Threshold Voltage			v		
	IRF610-613	2.0	4.0		$I_D = 250 \ \mu A$, $V_{DS} = V_{GS}$	
	MTP2N18/20	2.0	4.5		$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	V _{GS} = 10 V, I _D = 1.25 A	
	IRF610/611		1.5			
	IRF612/613		2.4		I _D = 1.0 A	
	MTP2N18/20		1.8			
V _{DS(on)}	Drain-Source On-Voltage ²		4.4	V	$V_{GS} = 10$ V; $I_D = 2.0$ A	
	MTP2N18/2N20		3.6	v	$V_{GS} = 10 V; I_D = 1.0 A;$ $T_C = 100^{\circ}C$	
9fs	Forward Transconductance	0.8		S (ひ)	$V_{DS} = 10 V$, $I_{D} = 1.25 A$	
ynamic C	haracteristics					
Ciss	Input Capacitance		200	pF	$V_{DS} = 25 V_1 V_{GS} = 0 V$	
Coss	Output Capacitance		80	pF	1 = 1.0 MHz	
Crss	Reverse Transfer Capacitance		25	ρF	-	
witching (Characteristics (T _C = 25°C, Figures 11,	12) ³				
t _{d(on)}	Turn-On Delay Time		15	ns	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 1.25 \text{ A}$	
t _r	Rise Time		25	ns	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 50 \Omega$ $R_{GS} = 50 \Omega$	
t _{d(off)}	Turn-Off Delay Time		15	ns		
tı 🛛	Fall Time		15	ns		
Qg	Total Gate Charge		7.5	nC	$V_{GS} = 10 V, I_D = 3.0 A$ $V_{DD} = 45 V$	

IRF610-613 MTP2N18/2N20

Electrical Characteristics (Cont.) (T_C = 25°C unless otherwise noted)

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	In Diode Characteristics				L n
V _{SD}	Diode Forward Voltage IRF610/611		2.0	v	I _S = 2.5 A; V _{GS} = 0 V
	IRF612/613		1.8	v	Is = 2.0 A; VGS = 0 V
t _{rr}	Reverse Recovery Time	290		ns	$I_{S} = 2.5 \text{ A}; \text{ d}_{S}/\text{d}t = 25 \text{ A}/\mu\text{S}$

Notes 1. $T_{\mu} = +25^{\circ}C$ to $+150^{\circ}C$ 2. Pulse test: Pulse width $\leq 80 \ \mu$ s, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment.

Typical Performance Curves

Figure 1 Output Characteristics

Figure 2 Static Drain to Source Resistance vs Drain Current

Figure 4 Temperature Variation of Gate to Source Threshold Voltage

