


IRFN044SMD

MECHANICAL DATA

N-CHANNEL POWER MOSFET

V_{DSS} **60V** I_{D(cont)} 34A R_{DS(on)} 0.040Ω

FEATURES

- HERMETICALLY SEALED SURFACE **MOUNT PACKAGE**
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD₁

Pad 1 - Source Pad 2 - Drain

Pad 3 - Gate

IRFxxxSM also available with Note: pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 25°C)	34A		
I_{D}	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	21A		
I_{DM}	Pulsed Drain Current ¹	136A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	340mJ		
dv/dt	Peak Diode Recovery ³	4.5V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
TL	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ heta JC}$	Thermal Resistance Junction to Case	1.67°C/W		
$R_{\thetaJ-PCB}$	Thermal Resistance Junction to PCB (Typical)	4°C/W		
Mataa				

Notes


1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%

2) @ V_{DD} = 25V , L \geq 0.3mH , R_G = 25 Ω , Peak I_L = 34A , Starting T_J = 25°C

3) @ I $_{SD} \leq$ 34A , di/dt \leq 100A/ μs , $V_{DD} \leq$ BV $_{DSS}$, $T_{J} \leq$ 150°C , SUGGESTED R_{G} = 9.1 Ω

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

IRFN044SMD

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter Test Conditions		Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS		-					
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	60			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.00		V/°C	
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$			0.68		V/ C	
R _{DS(on)}	Static Drain – Source On–State Resistance ¹	V _{GS} = 10V	I _D = 21A			0.040		
		$V_{GS} = 10V$	I _D = 34A			0.050	$ \Omega$	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance ¹	$V_{DS} \ge 15V$	I _{DS} = 21A	17			S(\O)	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ	
			T _J = 125°C			250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V			100		Λ	
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$			-100	nA		
	DYNAMIC CHARACTERISTICS						ı	
C _{iss}	Input Capacitance	$V_{GS} = 0$			2400			
C _{oss}	Output Capacitance	$V_{DS} = 25V$	V _{DS} = 25V f = 1MHz				pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz						
Q _g	Total Gate Charge ¹	V _{GS} = 10V		39		88	nC	
	Onto Course Observe 1	$V_{DS} = 0.5BV_{DS}$	S	0.7		45		
Q _{gs}	Gate – Source Charge 1	$I_D = 34A$	-	6.7		15	nC	
Q _{gd}	Gate – Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DS}$	3	18		52		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30V$	= =			23	ns	
t _r	Rise Time	I _D = 34A				130		
t _{d(off)}	Turn-Off Delay Time	$R_G = 9.1\Omega$				81	-	
t _f	Fall Time				79			
	SOURCE - DRAIN DIODE CHARAC	TERISTICS					ı	
Is	Continuous Source Current					34	Α	
I _{SM}	Pulse Source Current ²					136		
V_{SD}	Diode Forward Voltage	$I_{S} = 34A$ $V_{GS} = 0$	T _J = 25°C			2.5	V	
t _{rr}	Reverse Recovery Time	I _F = 34A	T _J = 25°C			220	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μs	s V _{DD} ≤ 50V			1.6	μС	
t _{on}	Forward Turn-On Time				Negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8		ام	
L _S	Internal Source Inductance (from centre	e of source pad to end		2.8		⊣ nH		

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk