

Preliminary Information September 2014

GENERAL DESCRIPTION

IS31AP2111 is a digital audio amplifier capable of driving a pair of 8Ω , 20W operating at 24V supply without external heat-sink or fan requirement with play music.

IS31AP2111 can provide advanced audio processing capabilities, such as volume control, 20 bands speaker EQ, audio mixing, 3D surround and Dynamic Range Control (DRC). These functions are fully programmable via a simple I2C control interface.

Robust protection circuits are provided to protect IS31AP2111 from damage due to accidental erroneous operating condition. IS31AP2111 is more tolerant to noise and PVT (Process, Voltage, and Temperature) variation than the analog Class-AB or Class-D audio amplifier counterpart implemented by analog circuit design. IS31AP2111 is pop free during instantaneous power switch because of its built-in, robust anti-pop circuit.

APPLICATIONS

- TV audio
- Boom-box, CD and DVD receiver, docking system
- Powered speaker
- Wireless audio

FEATURES

•

- 16/18/20/24-bits input with I2S, Left-alignment and Right-alignment data format
- PSNR & DR (A-weighting) Loudspeaker: 99dB (PSNR), 104dB (DR) @24V
 - Multiple sampling frequencies (F_S)
 - 32kHz / 44.1kHz / 48kHz and
 - 64kHz / 88.2kHz / 96kHz and
 - 128kHz / 176.4kHz / 192kHz
- System clock = 64x, 128x, 192x, 256x, 384x, 512x, 576x, 768x, 1024x Fs
 - 64x~1024x F_s for 32kHz / 44.1kHz / 48kHz
 - 64x~512x F_s for 64kHz / 88.2kHz / 96kHz
 - 64x~256x F_s for 128kHz / 176.4kHz / 192kHz
- Supply voltage
 - 3.3V for digital circuit
 - 10V~26V for loudspeaker driver
 - Loudspeaker output power for at 24V
 - 10W \times 2CH into 8 Ω @0.24% THD+N for stereo
 - 20W \times 2CH into 8 Ω @0.38% THD+N for stereo
- Sound processing including:
 - 20 bands parametric speaker EQ
 - Volume control (+24dB ~ -103dB, 0.125dB/step),
 - Dynamic range control (DRC)
 - Dual band dynamic range control
 - Power clipping
 - 3D surround sound
 - Channel mixing
 - Noise gate with hysteresis window
 - Bass/Treble tone control
 - DC-blocking high-pass filter
- Anti-pop design
- Short circuit and over-temperature protection
- I2C control interface with selectable device address
- Support hardware and software reset
- Internal PLL
- LV Under-voltage shutdown and HV Under-voltage detection
- Power saving mode

TYPICAL APPLICATION CIRCUIT

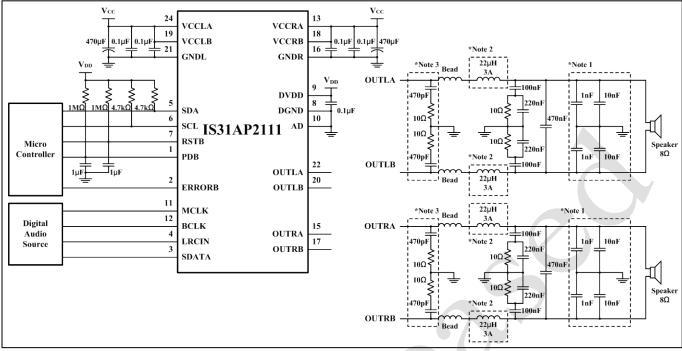


Figure 1 Typical Application Circuit (for BTL Stereo, Single-ended Input)

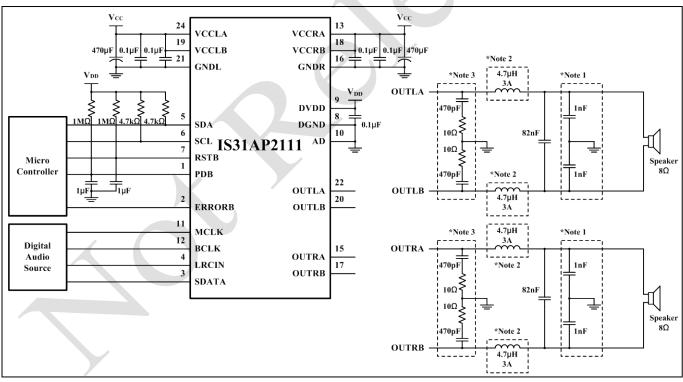
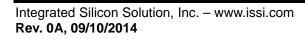


Figure 2 Typical Application Circuit (Economic Type, Moderate EMI Suppression)

Note 1: These capacitors should be placed as close to speaker jack as possible, and their values should be determined according to EMI test results.

Note 2: When concerning about short-circuit protection, it is suggested using the choke with its I_{DC} larger than 5A.

Note 3: The snubber circuit can be removed while the V_{CC} \leq 20V.


PIN CONFIGURATION

Package	Pin Configuration (Top View)			
eTSSOP-24	PDB ERRORB SDATA LRCIN SDA SCL RSTB DGND DVDD AD MCLK BCLK	2 3 4 5 6 7 8 9 10	24 23 22 21 20 19 18 17 16 15 14 13	VCCLA NC OUTLA GNDL OUTLB VCCLB VCCRB OUTRB GNDR OUTRA NC VCCRA

PIN DESCRIPTION

No.	Pin	Description	Characteristics
1	PDB	Power down, low active.	Schmitt trigger TTL input buffer
2	ERRORB	Error status, low active.	Open-drain output
3	SDATA	I2S serial audio data input.	Schmitt trigger TTL input buffer
4	LRCIN	Left/Right clock input (F _s).	Schmitt trigger TTL input buffer
5	SDA	I2C serial data.	Schmitt trigger TTL input buffer
6	SCL	I2C serial clock input.	Schmitt trigger TTL input buffer
7	RSTB	Reset, low active.	Schmitt trigger TTL input buffer
8	DGND	Digital ground.	
9	DVDD	Digital power.	
10	AD	I2C select address.	Schmitt trigger TTL input buffer
11	MCLK	Master clock input.	Schmitt trigger TTL input buffer
12	BCLK	Bit clock input (64F _s).	Schmitt trigger TTL input buffer
13	VCCRA	Right channel supply A.	
14, 23	NC	No connection.	
15	OUTRA	Right channel output A.	
16	GNDR	Right channel ground.	
17	OUTRB	Right channel output B.	
18	VCCRB	Right channel supply B.	
19	VCCLB	Left channel supply B.	
20	OUTLB	Left channel output B.	
21	GNDL	Left channel ground.	
22	OUTLA	Left channel output A.	
24	VCCLA	Left channel supply A.	
	Thermal Pad	Connect to GND.	

ORDERING INFORMATION INDUSTRIAL RANGE: 0°C TO +70°C

Order Part No.	Package	QTY
IS31AP2111-ZLS1-TR IS31AP2111-ZLS1	eTSSOP-24, Lead-free	2500/Reel 62/Tube

Copyright © 2014 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not

authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

Integrated Silicon Solution, Inc. - www.issi.com Rev. 0A, 09/10/2014

ABSOLUTE MAXIMUM RATINGS

Supply for driver stage (VCCR, VCCL), V _{CC}	–0.3V ~ +30V
Supply for digital circuit (DVDD), V _{DD}	-0.3V ~ +3.6V
Input voltage (SDA,SCL,RSTB,PDB,ERRORB,MCLK, BCLK,LRCIN,SDATA), V _{IN}	-0.3V ~ +3.6V
Thermal resistance, θ_{JA}	32.8°C/W
Junction temperature range, T _J	0°C ~ 150°C
Storage temperature range, T _{STG}	-65°C ~ +150°C
ESD (HBM)	TBD
ESD (CDM)	

Note:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{cc}	Supply for driver stage to VCCR/L		10		26	V
V _{DD}	Supply for digital circuit		3.15		3.45	V
TJ	Junction operating temperature		0		125	°C
T _A	Ambient operating temperature		0		70	°C

DC ELECTRICAL CHARACTERISTICS

 $V_{CC}=24V$, $T_A=25^{\circ}C$, $R_L=8\Omega$ (unless otherwise noted).

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{PDH}	VCC supply current during power down	$V_{CC} = 24V$		4	200	μA
I _{PDL}	DVDD supply current during power down	$V_{DD} = 3.3V$		3.6	10	μA
V_{UVH}	Under voltage disabled (For DVDD)			2.9		V
V_{UVL}	Under voltage enabled (For DVDD)			2.8		V
P	Static drain-to-source on-state resistor, PMOS			245		
R _{DS(ON)}	Static drain-to-source on-state resistor, NMOS	$V_{CC} = 24V, I_{D} = 500mA$		150		mΩ
I _{SC}	Channel over-current protection	V _{CC} =24V, I _D = 500mA (Note 1)		5.1		А
Ŧ	Junction temperature for driver shutdown			158		°C
Τs	Temperature hysteresis for recovery from shutdown			33		°C
_ogic Ele	ectrical Characteristics					
V _{IH}	High level input voltage		2.0			V
V _{IL}	Low level input voltage				0.8	V
V _{OH}	High level output voltage		2.4			V
V _{OL}	Low level output voltage				0.4	V
CIN	Input capacitance			6.4		pF

Note 1: Loudspeaker over-current protection is only effective when loudspeaker drivers are properly connected with external LC filters. Please refer to the application circuit example for recommended LC filter configuration.

AC ELECTRICAL CHARACTERISTICS

 $T_A=25^{\circ}C$, $V_{CC}=24V$, $V_{DD}=3.3V$, $f_S=48kHz$, $R_L=8\Omega$ with passive LC lowpass filter (L= 22µH, $R_{DC}=0.12\Omega$, C=470nF), input is 1kHz sinewave, volume is 0dB unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Po	RMS output power	THD+N=0.38%, +8dB volume (Note 2)		20		W
THD+N	Total harmonic distortion + noise	P _o = 10W		0.24		%
V _{NO}	Output noise	20Hz ~ 20kHz (Note 3)		179		μV
SNR	Signal-to-noise ratio	+8dB volume, input level is -9dB (Note 3)		99		dB
DR	Dynamic range	+8dB volume, input level is -68dB (Note 3)		104		dB
PSRR	Power supply ripple rejection	V _{RIPPLE} = 1V _{RMS} at 1kHz		-68		dB
	Channel separation	1W @1kHz		-85		dB

I2C DIGITAL INPUT SWITCHING CHARACTERISTICS (Note 4)

0. maked	Parameter	Standard Mode		Fast Mode		11
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
f _{SCL}	Serial-Clock frequency	0	100	0	400	kHz
t _{BUF}	Bus free time between a STOP and a START condition	4.7		1.3		μs
t _{HD, STA}	Hold time (repeated) START condition	4.0		0.6		μs
t _{SU, STA}	Repeated START condition setup time	4.7		0.6		μs
t _{SU, STO}	STOP condition setup time	4.0		0.6		μs
t _{hd, dat}	Data hold time	0	3.45	0	0.9	μs
t _{SU, DAT}	Data setup time	250		100		ns
t _{LOW}	SCL clock low period	4.7		1.3		μs
t _{HIGH}	SCL clock high period	4.0		0.6		μs
t _R	Rise time of both SDA and SCL signals, receiving		1000	20+0.1C _b	300	ns
t _F	Fall time of both SDA and SCL signals, receiving		300	20+0.1C _b	300	ns
Cb	Capacitive load for each bus line		400		400	pF
V _{NL}	Noise margin at the low level for each connected device (including hysteresis)	0.1V _{DD}		$0.1V_{DD}$		V
V _{NH}	Noise margin at the high level for each connected device (including hysteresis)	0.2V _{DD}		0.2V _{DD}		V

I2S DIGITAL INPUT SWITCHING CHARACTERISTICS (Note 4)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{LR}	LRCIN period (1/F _s)		10.41		31.25	μs
t _{BL}	BCLK rising edge to LRCIN edge		50			ns
t _{LB}	LRCIN edge to BCLK rising edge		50			ns
t _{BCC}	BCLK period (1/64F _S)		162.76		488.3	ns
t _{BCH}	BCLK pulse width high		81.38		244	ns
t _{BCL}	CBLK pulse width low		81.38		244	ns
t _{DS}	SDATA set up time		50			ns
t _{DH}	SDATA hold time		50			ns

Note 2: Thermal dissipation is limited by package type and PCB design. The external heat-sink or system cooling method should be adopted for maximum power output.

Note 3: Measured with A-weighting filter.

Note 4: Guaranteed by design.

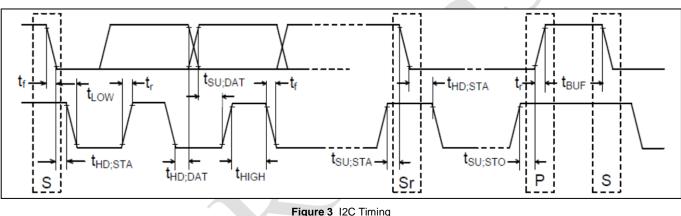


Figure 3 I2C Timing

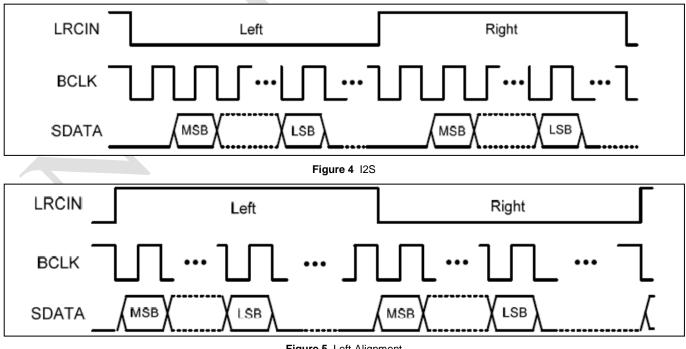


Figure 5 Left-Alignment

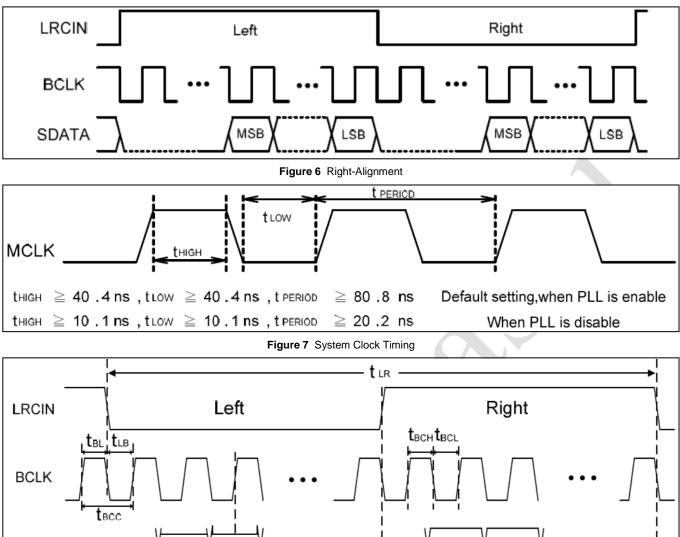


Figure 8 Timing Relationship (Using I2S format as an example)

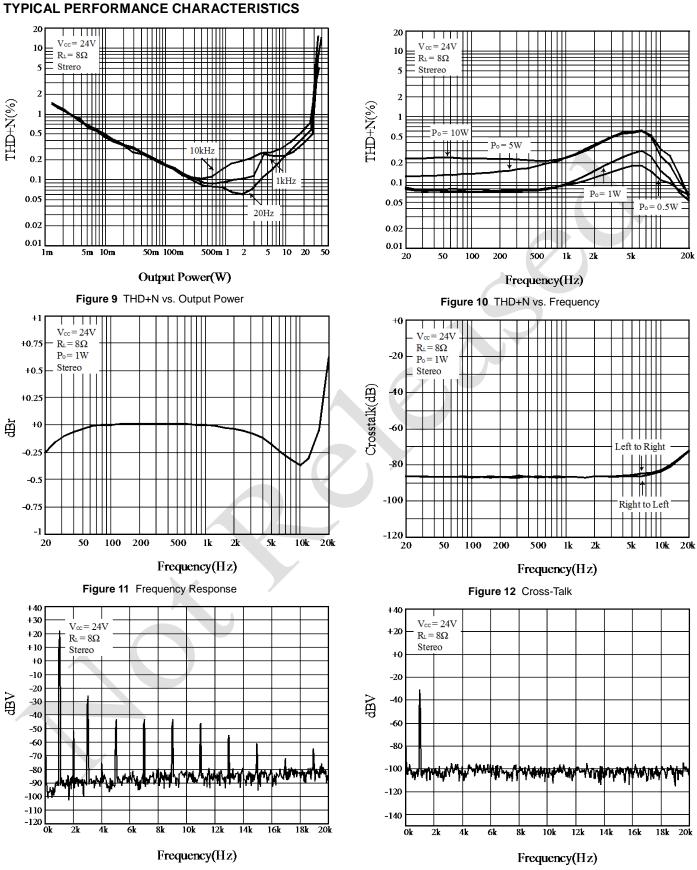
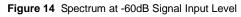
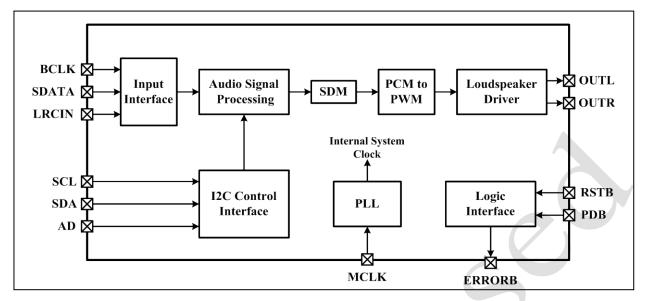



Figure 13 Spectrum at Peak SNR at -1dB Signal Input


50

100 100 Vcc=12V Vcc=12V 90 90 15V 80 80 243 2v=24V v. Vcc=22V Efficiency(%) 70 Efficiency(%) 70 =183 Vcc=18V 60 60 50 50 40 40 30 30 20 20 $R_L = 8\Omega$ $R_L = 8\Omega$ 10 10 Stereo Stereo 0 0 30 35 40 45 10 15 20 25 30 35 40 45 5 10 15 20 25 50 0 5 0 Output Power(W) Output Power(W) Figure 15 Efficiency vs. Total Output Power (Without Power Figure 16 Efficiency vs. Total Output Power (With Power Saving Saving Mode) Mode) 20 Т Switch Level: 26 10 $R_L = 8\Omega$ 12\ 5 Strero 2 THD+N(%) 1 0.5 24V 0.2 18V 0.1 22V0.05 0.02 0.01 10m 20m 50m 100m 200m 500m 1 10 20 5 50 2 Output Power(W) Figure 17 THD+N vs. Output Power

IS31AP2111

FUNCTIONAL BLOCK DIAGRAM

APPLICATIONS INFORMATION

OPERATION MODES

Without I2C Control

The default settings, Bass, Treble, EQ, Volume, DRC, ..., and PLL are applied to register table content when using IS31AP2111 without I2C control. The more information about default settings, please refer to the highlighted column of register table section.

With I2C Control

When using I2C control, user can program suitable parameters into IS31AP2111 for their specific applications. Please refer to the register table section to get the more detail.

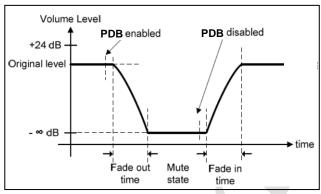
INTERNAL PLL

IS31AP2111 has a built-in PLL internally. The MCLK/F_S ratio will be fixed at 1024x, 512x, or 256x with a sample frequency of 48kHz, 96kHz, or 192kHz respectively. A career clock frequency is the frequency divided by 128 of master clock.

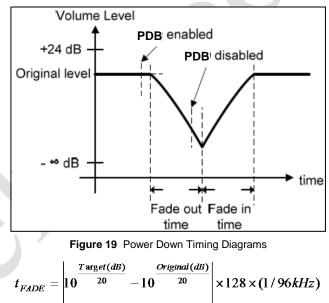
Table 1 MCLK/F_s Ratio

Fs	MCLK Frequency
48kHz	49.152MHz
44.1kHz	45.158MHz
32kHz	32.768MHz

DEFAULT VOLUME


The default volume level of IS31AP2111 is +1.675dB, the default volume register table setting is muted. Please give a de-mute command via I2C when the whole system is stable. About the more detailed information, please refer to the register table section.

RESET


When the RSTB pin is lowered, IS31AP2111 will clear the stored data and reset the register table to default values. IS31AP2111 will exit reset state at the 256th MCLK cycle after the RSTB pin is raised to high.

POWER DOWN CONTROL

IS31AP2111 has a built-in volume fade-in/fade-out design for power down and mute function. The relative power down timing diagrams for loudspeakers are shown below.

The volume level will be decreased to - ∞ dB in several LRCIN cycles. Once the fade-out procedure is finished, IS31AP2111 will turn off the power stages, stop clock signals (MCLK, BCLK) from feeding into digital circuit and turn off the current of the internal analog circuits. After PDB pin is pulled low, IS31AP2111 needs t_{FADE} time to finish the above works before entering power down state. Users can't program IS31AP2111 during power down state, but all the settings of register table will still be kept except that DVDD is removed.

If the power down function is disabled in the midway of the fade-out procedure, IS31AP2111 will also execute the fade-in procedure. In addition, IS31AP2111 will establish the analog circuits' bias current and feed the clock signals (MCLK, BCLK) into digital circuits. Then, IS31AP2111 will return to its normal operation without power down.

SELF-PROTECTION CIRCUITS

IS31AP2111 has built-in protection circuits including thermal, short-circuit and under-voltage detection circuits.

Thermal Protection

When the internal junction temperature is higher than 158°C, power stages will be turned off and IS31AP2111 will return to normal operation once the temperature drops to 125°C. The temperature values may vary around 10%.

Short-Circuit Protection

The short-circuit protection circuit protects the output stage when the wires connected to loudspeakers are shorted to each other or GND/VDD. For normal 24V operations, the current flowing through the power stage will be less than 5.1A for stereo configuration. Otherwise, the short-circuit detectors may pull the ERRORB pin to DGND, disabling the output stages. When the over-temperature or short-circuit condition occurs, the open-drain ERRORB pin will be pulled low and latched into ERROR state.

Once the over-temperature or short-circuit condition is removed, IS31AP2111 will exit ERROR state when one of the following conditions is met: (1) RSTB pin is pulled low. (2) PDB pin is pulled low. (3) Master mute is enabled through the I2C interface.

Under-Voltage Protection

Once the V_{DD} voltage is lower than 2.8V, IS31AP2111 will turn off its loudspeaker power stages and cease the operation of digital processing circuits. When V_{DD} becomes larger than 2.9V, IS31AP2111 will return to normal operation.

ANTI-POP DESIGN

IS31AP2111 will generate appropriate control signals to suppress pop sounds during initial power on/off, power down/up, mute, and volume level changes.

3D SURROUND SOUND

IS31AP2111 provides the virtual surround sound technology with greater separation and depth voice quality for stereo signals.

POWER ON SEQUENCE

Hereunder is IS31AP2111's power on sequence. Please note that IS31AP2111 default volume setting is muted initially. Please give a de-mute command via I2C when the whole system is stable.

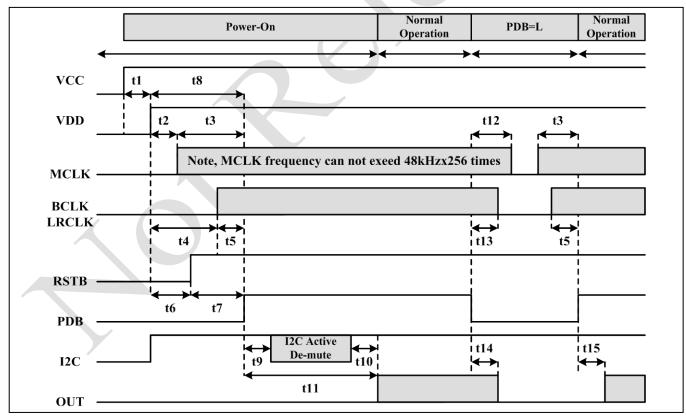


Figure 20 Power On Sequence

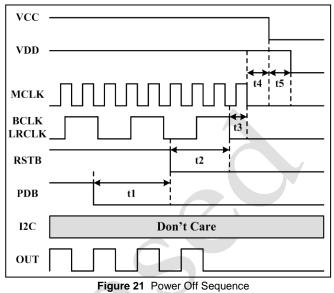


Table 2 Power On Sequence

Symbol	Condition	Min.	Max.	Unit
t1		0	-	ms
t2		0	-	ms
t3		10	-	ms
t4		0	-	ms
t5		10	-	ms
t6		10	-	ms
t7		0	-	ms
t8		200	-	ms
t9		20	-	ms
t10		-	0.1	ms
t11		-	0.1	ms
t12		25	-	ms
t13		25	-	ms
t14		-	22	ms
t15	DEF=L or H	-	0.1	ms

POWER OFF SEQUENCE

Hereunder is IS31AP2111's power off sequence.

Table 3 Power Off Sequence

Table 3 Power On Sequence				
Symbol	Min.			
t1	35ms			
t2	0.1ms			
t3	0ms			
t4	1ms			
t5	1ms			
	Symbol t1 t2 t3 t4			

I2C-BUS TRANSFER PROTOCOL

INTRODUCTION

IS31AP2111 employs I2C-bus transfer protocol. Two wires, serial data and serial clock carry information between the devices connected to the bus. Each device is recognized by a unique 7-bit address and can operate as either a transmitter or a receiver. The master device initiates a data transfer and provides the serial clock on the bus. IS31AP2111 is always an I2C slave device.

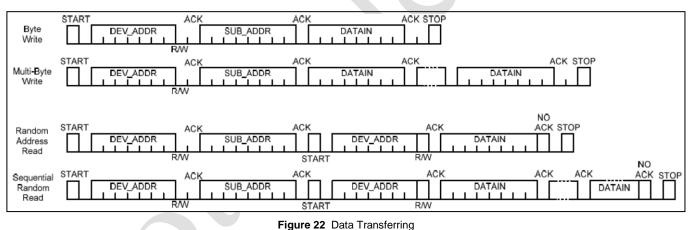
PROTOCOL

START And STOP Condition

START is identified by a high to low transition of the SDA signal. A START condition must precede any command for data transfer. A STOP is identified by a low to high transition of the SDA signal. A STOP condition terminates communication between IS31AP2111 and the master device on the bus. In both START and STOP, the SCL is stable in the high state.

Data Validity

The SDA signal must be stable during the high period of the clock. The high or low change of SDA

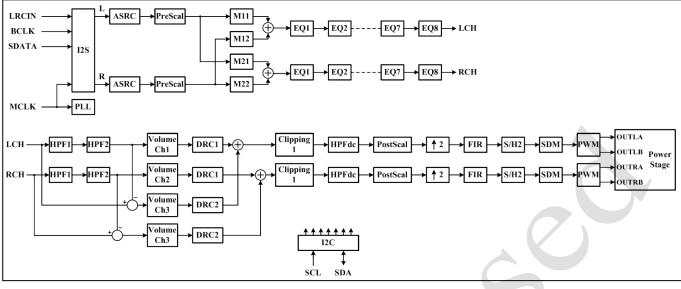

only occurs when SCL signal is low. IS31AP2111 samples the SDA signal at the rising edge of SCL signal.

Device Addressing

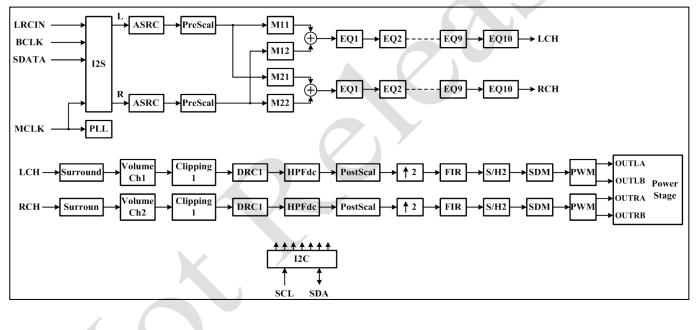
The master generates 7-bit address to recognize slave devices. When IS31AP2111 receives 7-bit address matched with 0110x00 (where x can be selected by external AD pin, respectively), IS31AP2111 will acknowledge at the 9th bit (the 8th bit is for R/W bit). The bytes following the device identification address are for IS31AP2111 internal sub-addresses.

Data Transferring

Each byte of SDA signaling must consist of 8 consecutive bits, and the byte is followed by an acknowledge bit. Data is transferred with MSB first, as shown in the figure below. In both write and read operations, IS31AP2111 supports both single-byte and multi-byte transfers. Refer to the figure below for detailed data-transferring protocol.



REGISTER DEFINITIONS


The IS31AP2111's audio signal processing data flow is shown below. Users can control these functions by programming appropriate settings in the register table. In this section, the register table is summarized first. The definition of each register follows in the next section.

Dual Band DRC Enable

Dual Bands DRC Disable

Table 4 Register Function

Address	Name	Table	Default
00h	State Control 1 Register	5	000x 0000
01h	State Control 2 Register	6	xx00 0000
02h	State Control 3 Register	7	xxxx 0000
03h	Master Volume Control Register	8	0001 1000
04h~06h	Channel 1~3 Volume Register	9	0001 0100
07h,08h	Bass/Treble Tone Register	10	xxx1 0000
09h	Reserved (Note)	-	-
0Ah	State Control 4 Register	11	1001 0000
0Bh~0Ch	Channel 1~2 Configuration Register	12	xxx1 0000
0Dh	Reserved		-
0Eh	DRC Limiter Attack/Release Rate Register	13	0110 1010
0Fh~10h	Reserved (Note)	\cdot	-
11h	State Control 5 Register	14	xx11 x010
12h	VCC Under Voltage Selection Register	15	1xxx 0001
13h	Noise Gate Gain Register	16	xxx0 xx00
14h	Coefficient RAM Base Address Register	17	x000 0000
15h~23h	User-Defined Coefficients Register	18~22	-
24h	Coefficients Control Register	23	xxxx 0000
25h~29h	Reserved (Note)	-	-
2Ah	Power Saving Mode Switching Level Register	24	0000 1101
2Bh	Volume Fine Tune Register	25	0011 1111

Note: The reserved registers are not allowed to write any bits in them, or the IC will be abnormal.

Table 5 00h State Control 1 Register

Bit	D7:D5	D4	D3
Name	F	-	PWML_X
Default	000	x	0
Bit	D2	D1	D0
Name	PWMR_X	LV_UVSEL	LREXC
Default	0	0	0

IS31AP2111 supports multiple serial data input formats including I2S, Left-alignment and Rightalignment. These formats are selected by users via D7~D5 of address 00h. The left/right channels can be exchanged to each other by programming to address 00h/D0, LREXC.

IF	Input Format
000	I2S 16-24 bits
001	Left-alignment 16-24 bits
010	Right-alignment 16 bits

011	Right-alignment 18 bits
100	Right-alignment 20 bits
101	Right-alignment 24 bits
Others	Not available
PWML_X	OUTLA/B exchange
0	No exchange
1	Exchange
PWMR_X	OUTRA/B exchange
0	No exchange
1	Exchange
LV_UVSEL	LV Under Voltage Selection
0	2.8V
1	3.1V
LREXC	Left/Right Channel Exchanged
0	No exchange
1	Left/Right exchange

Table 6 01h State Control 2 Register

Bit	D7:D6	D5:D4	D3:D0
Name	-	FS	PMF
Default	XX	00	0000

IS31AP2111 has a built-in PLL which can be bypassed by pulling the PLL pin High. When PLL is bypassed, IS31AP2111 only supports 1024x, 512x and 256x MCLK/Fs ratio for Fs is 32/44.1/48kHz, 64/88.2/96kHz, and 128/176.4/192kHz respectively. When PLL is enabled, multiple MCLK/Fs ratios are supported. Detail setting is shown in the following table.

- FS Sampling Frequency
- 00 32/44.1/48kHz
- 01 64/88.2/96kHz
- 1x 128/176.4/192kHz
- PMF Multiple MCLK/FS Ratio Setting (PLL is not bypassed)
- 0000 1024x(FS=00)/ 512x(FS=01)/ 256x(FS=1x)
- 0001 64x
- 0010 128x
- 0011 192x
- 0100 256x
- 0101 384x (Not available when FS=1x)
- 0110 512x (Not available when FS=1x)
- 0111 576x (Not available when FS=01,1x)
- 1000 768x (Not available when FS=01,1x)
- 1001 1024x (Not available when FS=01,1x)

Others Not available

Note: The FS × PMF should be lower than

49.152MHz, or the system will be error.

Table 7 02h State Control 3 Register

Bit	D7:D4	D3	D2:D0
Name	-	MUTE	CM1:CM3
Default	xxxx	0	000

IS31AP2111 has mute function including master mute and channel mute. When master mute is enabled, all 3 processing channels are muted. User can mute these 3 channels individually by channel mute. When the mute function is enabled or disabled, the fade-out or fade-in process will be initiated.

MUTE Master Mute

- 0 All channel not muted
- 1 All channel muted

CMx Channel x Mute

- 0 Channel x not muted
- 1 Channel x muted

Table 8 03h Master Volume Control Register

Bit	D7:D0
Name	MV
Default	0001 1000
0044004	

IS31AP2111 supports both master-volume (03h Register) and channel-volume control (04h, 05h and 06h Registers) modes. Both volume control settings range from +12dB ~ -103dB and 0.5dB per step. Note that the master volume control is added to the individual channel volume control as the total volume control. For example, if the master volume level is set at, Level A (in dB unit) and the channel volume level is set at Level B (in dB unit), the total volume control setting is equal to Level A plus with Level B. - 103dB \leq Total volume (Level A + Level B) \leq +24dB.

MV	Master Volume
0000 0000	+12.0dB
0000 0001	+11.5dB
0000 0010	+11.0dB
0001 1000	0dB
1110 0110	-103.0dB
1110 0111	-∞
Others	-∞

Table 9 04h~06h Channel 1~3 Volume Registers

Bit	D7:D0
Name	CxV
Default	0001 0100

CxV 0000 0000 0000 0001	Channel x Volume +12.0dB +11.5dB
 0001 0100	+2dB
 1110 0110 1110 0111 Others	-103.0dB -∞ -∞

Table 10 07h/08h Bass/Treble Tone Registers

Bit	D7:D5	D6:D0
Name	-	BTC/TTC
Default	XXX	10000

Last two sets of EQ can be programmed as bass/treble tone boost and cut. When, 0Ah Register, D6, BTE is set to high, the EQ-8 and EQ-9 will

perform as bass and treble respectively. The -3dB corner frequency of bass is 360Hz, and treble is 7kHz. The gain range for both filters is +12db ~ - 12dB with 1dB per step.

BTC/TTC 00000	Bass/Treble Gain Setting +12dB
 00100 00101	+12dB +11dB
 10000 10001	0dB -1dB
 111xx	-12dB

Table 11 0Ah State Control 4 Register

Bit	D7	D6	D5	D4
Name	SRBP	BTE	TBDRCE	NGE
Default	1	0	0	1
Bit	D3	D2	D1	D0
BIL	03	DZ		DO
Name	EQL	PSL	DSPB	HPB

The IS31AP2111 provides several DSP setting as following.

SRBP	Surround Bypass
SRBP	Surround Bypass

- 0 Surround enable
- 1 Surround bypass

BTE Bass/Treble Selection Bypass

- 0 Bass/treble disable
- 1 Bass/treble enable

TBDRCE Two Band DRC Enable

- 0 Two band DRC disable
- 1 Two band DRC enable

NGE Noise Gate Enable

- 0 Noise gate disable
- 1 Noise gate enable

EQL EQ Link

- 0 Each channel uses individual EQ
- 1 Channel-2 uses channel-1 EQ

PSL Post-Scale Link

- 0 Each channel uses individual post-scale
- 1 Use channel-1 post-scale

DSPB EQ Bypass

- 0 EQ enable
 - 1 EQ bypass

HPB	DC Blocking HPF Bypass
^	

- 0 HPF DC enable1 HPF DC bypass
- I HPF DC bypass

Bit	D7:D5	D4	D3
Name	-	CxDRCM	CxPCBP
Default	XXX	1	0
Bit	D2	D1	D0
Name	CxDRCBP		CxVBP
Default	0	x	0

The IS31AP2111 can configure each channel to enable or bypass DRC and channel volume and select the limiter set. IS31AP2111 support two mode of DRC, RMS and PEAK detection which can be selected via D4.

CxDRCM 0 1	Channel 1/2 DRC Mode Peak detection RMS detection
CxPCBP	Channel 1/2 Power Clipping Bypass
0	Channel 1/2 PC enable
1	Channel 1/2 PC bypass
CxDRCBP 0 1	Channel 1/2 DRC Bypass Channel 1/2 DRC enable Channel 1/2 DRC bypass
	Channel 1/2 Volume Bypass el 1/2's master volume operation el 1/2's master volume bypass

Table 13 0Eh DRC Limiter Attack/Release Rate Register

Bit	D7:D5	D6:D0
Name	LA	LR
Default	0110	1010
		<u> </u>

The IS31AP2111 defines a set of limiter. The attack/release rates are defines as following table.

DRC Attack Rate
3dB/ms
2.667dB/ms

0010	2.182dB/ms
0011	1.846dB/ms
0100	1.333dB/ms
0101	0.889dB/ms
0110	0.4528dB/ms
0111	0.2264dB/ms
1000	0.15dB/ms
1001	0.1121dB/ms
1010	0.0902dB/ms
1011	0.0752dB/ms
1100	0.0645dB/ms

1101 0.0563dB/ms

1110 0.0501dB/ms

1111 0.0451dB/ms

LR	DRC Release Rate
0000	0.5106dB/ms
0001	0.1371dB/ms
0010	0.0743dB/ms
0011	0.0499dB/ms
0100	0.0360dB/ms
0101	0.0299dB/ms
0110	0.0264dB/ms
0111	0.0208dB/ms
1000	0.0198dB/ms
1001	0.0172dB/ms
1010	0.0147dB/ms
1011	0.0137dB/ms
1100	0.0134dB/ms
1101	0.0117dB/ms
1110	0.0112dB/ms
1111	0.0104dB/ms

Table 14 11h State Control 5 Register

Bit	D7:D6	D5	D	4	D3
Name	-	SW_RSTB	LVUV_	FADE	-
Default	хх	1	1		х
Bit		D2	D1		D0
Name	DIS_MCLK_DET		QT_EN	PW	M_SEL
Default	0		1		0

The IS31AP2111 provides several DSP setting as following.

SW_RSTB	Software Reset	
0	Reset	
1	Normal operation	
	Low Under Voltage Fode	

Low Under Voltage Fade
No fade
fade

DIS_MCLK_DET Disable MCLK Detect Circuit

0	Enable MCLK detect circuit
1	Disable MCLK detect circuit
QT_EN	Power Saving Mode
0	Disable
1	Enable
PWM_SEL	PWM Modulation
0	Qua-ternary

0	Qua-ternary
1	Ternary

Table 15 12h VCC Under Voltage Selection Register

Bit	D7	D6:D4	D3:D0
Name	Dis_HVUV		HV_UVSEL
Default	1	ххх	0001

IS31AP2111 can disable HV under voltage detection via D7. IS31AP2111 support multi-level HV under voltage detection via D3~ D0, using this function, IS31AP2111 will fade out signal to avoid pop sounds if high voltage supply disappear before low voltage supply.

Table 16 13h Noise Gate Gain Register

9.7V

Others

Bit	D7:D5	D4
Name	-	DIS_NG_FADE
Default	xxx	0
Bit	D3:D2	D1:D0
Bit Name	D3:D2	D1:D0 NG_GAIN

IS31AP2111 provide noise gate function if receiving 2048 signal sample points smaller than noise gate attack level. User can change noise gate gain via D1~ D0. When noise gate function occurs, input signal will multiply noise gate gain (x1/8, x1/4 x1/2, x0). User can select fade out or not via D4.

DIS_	IG_FADE Disable Noise Gate Fade
0	Fade

1	No fade
NG_GAIN 00	Noise Gate Gain x1/8
01	x1/4
10	x1/2
11	Mute

Table 1714hCoefficient RAM Base AddressRegister

Bit	D7	D6:D0
Name	-	CFA
Default	х	000 0000

An on-chip RAM in IS31AP2111 stores user-defined EQ and mixing coefficients. The content of this coefficient RAM is indirectly accessed via coefficient registers, which consist of one base address register (14h), five sets of registers (15h ~ 23h) of three consecutive 8-bit entries for each 24-bit coefficient, and one control register (24h) to control access of the coefficients in the RAM.

CFA Coefficient RAM Base Address

Table 1815h~17hUser-DefinedCoefficientsRegisters

(Ton/Middle/Rotton	9 bits of	coofficients	A1)
(Top/Middle/Bottom		coemcients	ייה

NameC1BDefault-	Bit	D7:D0
Default -	Name	C1B
	Default	-

(Top/Middle/Bottom 8-bits of coefficients A2)

Bit	D7:D0
Name	C2B
Default	_

Table 20 1Bh~1DhUser-Defined CoefficientsRegisters

(Top/Middle/Bottom 8-bits of coefficients A1)

Bit	D7:D0
Name	C3B
Default	-

Table 21 1Eh~20hUser-Defined CoefficientsRegisters

(Top/Middle/Bottom 8-bits of coefficients B2)

Bit	D7:D0
Name	C4B
Default	-

Table 2221h~23hUser-Defined CoefficientsRegisters

(Top/Middle/Bottom 8-bits of coefficients A0)

Bit	D7:D0
Name	C5B
Default	

Table 23 24h Coefficients Control Register

Bit	D7:D4	D3	D2	D1	D0
Name	-	RA	R1	WA	W1
Default	XXXX	0	0	0	0

RA Enable Of Reading A Set Of Coefficients From RAM

- 0 Read complete
 - Read enable

1

- R1 Enable Of Reading A Single Coefficients
 From RAM
 0 Read complete
- 1 Read complete
- Read enable
- WA Enable Of Writing A Set Of Coefficients To RAM
- 0 Write complete
- 1 Write enable
- W1 Enable Of Writing A Single Coefficient To RAM
- 0 Write complete
- 1 Write enable

Table 242AhPower Saving Mode SwitchingLevel Register

Bit	D7:D5	D4:D0
Name	QT_SW_WINDOW	QT_SW_LEVEL
Default	000	01101

If the PWM exceeds the programmed switching power level (default 26×40ns), the modulation algorithm will change from quaternary into power saving mode. It results in higher power efficiency during larger power output operations. If the PWM drops below the programmed switching power level power saving mode hysteresis window, the

modulation algorithm will change back to quaternary modulation.

_	V_WINDOW esis Window 2 3 4 5 6 7 8 9	Power Saving Mode
00000	4	Switching Level

11111 62

Table 25 2Bh Volume Fine Tune Register

Bit	D7:D6	D5:D4	D3:D2	D1:D0	
Name	MV_FT	C1V_FT	C2V_FT	-	
Default	00	11	11	11	

IS31AP2111 supports both master-volume fine tune and channel-volume control fine tune modes. Both volume control settings range from 0dB ~ -0.375dB and 0.125dB per step. Note that the master volume fine tune is added to the individual channel volume fine tune as the total volume fine tune.

MV_FT 00 01 10 11	Master Volume Fine Tune 0dB -0.125dB -0.25dB -0.375dB
C1V_FT	Channel 1 Volume Fine Tune
00	0dB
01	-0.125dB
10	-0.25dB
11	-0.375dB
C2V_FT	Channel 2 Volume Fine Tune
00	0dB
01	-0.125dB
10	-0.25dB
11	-0.375dB

RAM ACCESS

The procedure to read/write coefficient(s) from/to RAM is as followings:

Read A Single Coefficient From RAM:

- 1. Write 7-bit of address to I2C address-0X14
- 2. Write 1 to R1 bit in address-0X24

 Read top 8-bits of coefficient in I2C address-0X15
 Read middle 8-bits of coefficient in I2C address-0X16

5. Read bottom 8-bits of coefficient in I2C address-0X17

Read A Set Of Coefficients From RAM:

1. Write 7-bits of address to I2C address-0X14

2. Write 1 to RA bit in address-0X24

3. Read top 8-bits of coefficient A1 in I2C address-0X15

4. Read middle 8-bits of coefficient A1in I2C address-0X16

5. Read bottom 8-bits of coefficient A1 in I2C address-0X17

6. Read top 8-bits of coefficient A2 in I2C address-0X18

7. Read middle 8-bits of coefficient A2 in I2C address-0X19

8. Read bottom 8-bits of coefficient A2 in I2C address-0X1A

9. Read top 8-bits of coefficient B1 in I2C address-0X1B

10. Read middle 8-bits of coefficient B1 in I2C address-0X1C

11. Read bottom 8-bits of coefficient B1 in I2C address-0X1D

12. Read top 8-bits of coefficient B2 in I2C address-0X1E

13. Read middle 8-bits of coefficient B2 in I2C address-0X1F

14. Read bottom 8-bits of coefficient B2 in I2C address-0X20

15. Read top 8-bits of coefficient A0 in I2C address-0X21

16. Read middle 8-bits of coefficient A0 in I2C address-0X22

17. Read bottom 8-bits of coefficient A0 in I2C address-0X23

Write A Single Coefficient From RAM:

1. Write 7-bis of address to I2C address-0X14

Write top 8-bits of coefficient in I2C address-0X15
 Write middle 8-bits of coefficient in I2C address-

0X16 4. Write bottom 8-bits of coefficient in I2C address-

0X17

5. Write 1 to W1 bit in address-0X24

Write A Set Of Coefficients From RAM:

 Write 7-bits of address to I2C address-0X14
 Write top 8-bits of coefficient A1 in I2C address-0X15

3. Write middle 8-bits of coefficient A1 in I2C address-0X16

4. Write bottom 8-bits of coefficient A1 in I2C address-0X17

5. Write top 8-bits of coefficient A2 in I2C address- $0 \\ X18$

6. Write middle 8-bits of coefficient A2 in I2C address-0X19

7. Write bottom 8-bits of coefficient A2 in I2C address-0X1A

8. Write top 8-bits of coefficient B1 in I2C address-0 X1B

9. Write middle 8-bits of coefficient B1 in I2C address-0X1C

10. Write bottom 8-bits of coefficient B1 in I2C address-0X1D

11. Write top 8-bits of coefficient B2 in I2C address-0X1E

12. Write middle 8-bits of coefficient B2 in I2C address-0X1F

13. Write bottom 8-bits of coefficient B2 in I2C address-0X20

14. Write top 8-bits of coefficient A0 in I2C address-0X21

15. Write middle 8-bits of coefficient A0 in I2C address-0X22

16. Write bottom 8-bits of coefficient A0 in I2C address-0X23

17. Write 1 to WA bit in address-0X24

Note: the read and write operation on RAM coefficients works only if LRCIN (Pin 15) switching on rising edge. And, before each writing operation, it is necessary to read the address-0X24 to confirm whether RAM is writable current in first. If the logic of W1 or WA is high, the coefficient writing is prohibited.

USER-DEFINED EQUALIZER

The IS31AP2111 provides 18 parametric Equalizer (EQ). Users can program suitable coefficients via I2C control interface to program the required audio band frequency response for every EQ. The transfer function

$$H_{(z)} = \frac{A_0 + A_1 z^{-1} + A_2 z^{-2}}{1 + B_1 z^{-1} + B_2 z^{-2}}$$

The data format of 2's complement binary code for EQ coefficient is 3.21. i.e., 3-bits for integer (MSB is the sign bit) and 21-bits for mantissa. Each coefficient range is from 0x800000 (-4) to 0x7FFFFF (+3.999999523). These coefficients are stored in User Defined RAM and are referenced in following manner:

CHxEQyA0=A0 CHxEQyA1=A1 CHxEQyA2=A2 CHxEQyB1=-B1 CHxEQyB2=-B2

Where x and y represents the number of channel and the band number of EQ equalizer.

All user-defined filters are path-through, where all coefficients are defaulted to 0 after being powered up, except the A0 that is set to 0x200000 which represents 1.

MIXER

The IS31AP2111 provides mixers to generate the extra audio source from the input left and right channels. The coefficients of mixers are defined in range from 0x800000 (-1) to 0x7FFFF (0.9999998808). The function block diagram is as following figure:

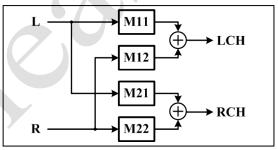


Figure 23 Mixer Function Block Diagram

PRE-SCALE

For each audio channel, IS31AP2111 can scale input signal level prior to EQ processing which is realized by a 24-bit signed fractional multiplier. The pre-scale factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFF), for this multiplier, can be loaded into RAM. The default values of the prescaling factors are set to 0x7FFFFF. Programming of RAM is described in RAM access.

POST-SCALE

The IS31AP2111 provides an additional multiplication after equalizing and before interpolation stage, which is realized by a 24-bit signed fractional multiplier. The post-scaling factor, ranging from -1 (0x800000) to 0.9999998808 (0x7FFFFF), for this multiplier, can be loaded into RAM. The default values of the post-scaling factors are set to 0x7FFFFF. All channels can use the channel-1 post-scale factor by setting the post-scale link. Programming of RAM is described in RAM access.

POWER CLIPPING

The IS31AP2111 provides power clipping function to avoid excessive signal that may destroy loud speaker. The power clipping level is defined by 24bit representation and is stored in RAM address 0X6F and 0X70. The following table shows the power clipping level's numerical representation.

Max. Amplitude	dB	Linear	Decimal	Hex (3.21 Format)
V _{cc}	0	1	2097152	200000
V _{CC} ×0.707	-3	0.707	1484574	16A71E
$V_{CC} \times 0.5$	-6	0.5	1048576	100000
V _{CC} ×L	x	L= 10 ^(x/20)	D= 2097152×L	H= dec2hex(D)

Table 26 Sample Calculation For Power Clipping

ATTACK THRESHOLD FOR DYNAMIC RANGE CONTROL (DRC)

The IS31AP2111 provides dynamic range control (DRC) function. When the input exceeds the programmable attack threshold value, the output power will be limited by this threshold power level via gradual gain reduction. Attack threshold is defined

by 24-bit representation and is stored in RAM address 0X71 and 0X72.

RELEASE THRESHOLD FOR DYNAMIC RANGE CONTROL (DRC)

After IS31AP2111 has reached the attack threshold, its output power will be limited to that level. The output power level will be gradually adjusted to the programmable release threshold level. Release threshold is defined by 24-bit representation and is stored in RAM address 0X73 and 0X74. The following table shows the attack and release threshold's numerical representation.

Power	dB	Linear	Decimal	Hex (3.21 Format)
(V _{CC} ^2)/R	0	1	2097152	200000
(V _{CC} ^2)/2R	-3	0.5	1048576	100000
(V _{CC} ^2)/4R	-6	0.25	524288	80000
(V _{CC} ^2)/R ×L	x	L= 10 ^(x/10)	D= 2097152×L	H= dec2hex(D)

Table 27 Sample Calculation For Attack AndRelease Threshold

To best illustrate the dynamic range control, please refer to the following figure.

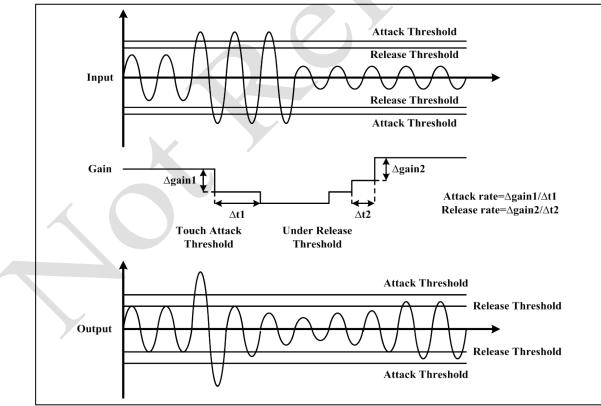


Figure 24 Attack And Release Threshold

NOISE GATE ATTACK LEVEL

When both left and right signals have 2048 consecutive sample points less than the programmable noise gate attack level, the audio signal will multiply noise gate gain, which can be set at x1/8, x1/4, x1/2, or zero if the noise gate function is enabled. Noise gate attack level is defined by 24bit representation and is stored in RAM address 0X75.

NOISE GATE RELEASE LEVEL

ĺ

After entering the noise gating status, the noise gain will be removed whenever IS31AP2111 receives any input signal that is more than the noise gate release level. Noise gate release level is defined by 24-bit representation and is stored in RAM address 0X76. The following table shows the noise gate attack and release threshold level's numerical representation.

Table 28 Sa And Release		lation For No	ise Gate Attack
Input	Linear	Decimal	Hex

Input Amplitude	Linear	Decimal	Hex (1.23 Format)
0dB	1	8388607	7FFFF
-100dB	10 ⁻⁵	83	53
-110dB	10 ^{-5.5}	26	1A
xdB	L= 10 ^(x/20)	D= 2097152×L	H= dec2hex(D)

DRC ENERGY COEFFICIENT

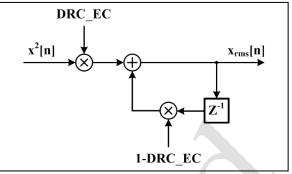


Figure 25 Digital Processing Of Calculating RMS Signal Power

The above figure illustrates the digital processing of calculating RMS signal power. In this processing, a DRC energy coefficient is required, which can be programmed for different frequency range. Energy coefficient is defined by 24-bit representation and is stored in RAM address 0X77 and 0X78. The following table shows the DRC energy coefficient numerical representation.

Table 29 Sample Calculation For DRC Energy	
Coefficient	

Combient				
DRC Energy Coefficient	dB	Linear	Decimal	Hex (1.23 Format)
1	0	1	8388607	7FFFF
1/256	-48.2	1/256	524288	80000
1/1024	-60.2	1/1024	131072	20000
L	х	L= 10 ^(x/20)	D= 2097152×L	H= dec2hex(D)

THE USER DEFINED RAM

The contents of user defined RAM is represented in following table.

Table 30 User Defined RAM

Address	Name	Coefficient	Default	Address	Name	Coefficient	Default
0x00	Channel 1 EQ1	CH1EQ1A1	0x000000	0x32	Channel 2 EQ1	CH2EQ1A1	0x000000
0x01		CH1EQ1A2	0x000000	0x33		CH2EQ1A2	0x000000
0x02		CH1EQ1B1	0x000000	0x34		CH2EQ1B1	0x000000
0x03		CH1EQ1B2	0x000000	0x35		CH2EQ1B2	0x000000
0x04		CH1EQ1A0	0x200000	0x36		CH2EQ1A0	0x200000
0x05		CH1EQ2A1	0x000000	0x37	Channel 2 EQ2	CH2EQ2A1	0x000000
0x06		CH1EQ2A2	0x000000	0x38		CH2EQ2A2	0x000000
0x07	Channel 1 EQ2	CH1EQ2B1	0x000000	0x39		CH2EQ2B1	0x000000
0x08		CH1EQ2B2	0x000000	0x3A		CH2EQ2B2	0x000000
0x09		CH1EQ2A0	0x200000	0x3B		CH2EQ2A0	0x200000
0x0A		CH1EQ3A1	0x000000	0x3C		CH2EQ3A1	0x000000
0x0B		CH1EQ3A2	0x000000	0x3D	Channel 2 EQ3	CH2EQ3A2	0x000000
0x0C	Channel 1 EQ3	CH1EQ3B1	0x000000	0x3E		CH2EQ3B1	0x000000
0x0D	LQU	CH1EQ3B2	0x000000	0x3F		CH2EQ3B2	0x000000
0x0E		CH1EQ3A0	0x200000	0x40		CH2EQ3A0	0x200000
0x0F		CH1EQ4A1	0x000000	0x41	Channel 2 EQ4	CH2EQ4A1	0x000000
0x10		CH1EQ4A2	0x000000	0x42		CH2EQ4A2	0x000000
0x11	Channel 1 EQ4	CH1EQ4B1	0x000000	0x43		CH2EQ4B1	0x000000
0x12	LQT	CH1EQ4B2	0x000000	0x44		CH2EQ4B2	0x000000
0x13		CH1EQ4A0	0x200000	0x45		CH2EQ4A0	0x200000
0x14		CH1EQ5A1	0x000000	0x46		CH2EQ5A1	0x000000
0x15		CH1EQ5A2	0x000000	0x47	Channel 2 EQ5	CH2EQ5A2	0x000000
0x16	Channel 1 EQ5	CH1EQ5B1	0x000000	0x48		CH2EQ5B1	0x000000
0x17		CH1EQ5B2	0x000000	0x49		CH2EQ5B2	0x000000
0x18		CH1EQ5A0	0x200000	0x4A		CH2EQ5A0	0x200000
0x19	Channel 1 EQ6	CH1EQ6A1	0x000000	0x4B	Channel 2 EQ6	CH2EQ6A1	0x000000
0x1A		CH1EQ6A2	0x000000	0x4C		CH2EQ6A2	0x000000
0x1B		CH1EQ6B1	0x000000	0x4D		CH2EQ6B1	0x000000
0x1C		CH1EQ6B2	0x000000	0x4E		CH2EQ6B2	0x000000
0x1D		CH1EQ6A0	0x200000	0x4F		CH2EQ6A0	0x200000

Table 30 User Defined RAM (Continues)

Address	Name	Coefficient	Default	Address	Name	Coefficient	Default
0x1E	Channel 1 EQ7	CH1EQ7A1	0x000000	0x50	Channel 2 EQ7	CH2EQ7A1	0x000000
0x1F		CH1EQ7A2	0x000000	0x51		CH2EQ7A2	0x000000
0x20		CH1EQ7B1	0x000000	0x52		CH2EQ7B1	0x000000
0x21		CH1EQ7B2	0x000000	0x53		CH2EQ7B2	0x000000
0x22		CH1EQ7A0	0x200000	0x54		CH2EQ7A0	0x200000
0x23		CH1EQ8A1	0x000000	0x55	Channel 2 EQ8	CH2EQ8A1	0x000000
0x24	Channel 1 EQ8	CH1EQ8A2	0x000000	0x56		CH2EQ8A2	0x000000
0x25		CH1EQ8B1	0x000000	0x57		CH2EQ8B1	0x000000
0x26		CH1EQ8B2	0x000000	0x58		CH2EQ8B2	0x000000
0x27		CH1EQ8A0	0x200000	0x59		CH2EQ8A0	0x200000
0x28	Channel 1 EQ9	CH1EQ9A1	0x000000	0x5A	Channel 2 EQ9	CH2EQ9A1	0x000000
0x29		CH1EQ9A2	0x000000	0x5B		CH2EQ9A2	0x000000
0x2A		CH1EQ9B1	0x000000	0x5C		CH2EQ9B1	0x000000
0x2B		CH1EQ9B2	0x000000	0x5D		CH2EQ9B2	0x000000
0x2C		CH1EQ9A0	0x200000	0x5E		CH2EQ9A0	0x200000
0x2D	Channel 1 EQ10	CH3EQ1A1	0x000000	0x5F	Channel 2 EQ10	CH3EQ2A1	0x000000
0x2E		CH3EQ1A2	0x000000	0x60		CH3EQ2A2	0x000000
0x2F		CH3EQ1B1	0x000000	0x61		CH3EQ2B1	0x000000
0x30		CH3EQ1B2	0x000000	0x62		CH3EQ2B2	0x000000
0x31		CH3EQ1A0	0x200000	0x63		CH3EQ2A0	0x200000

Table 30 User Defined RAM (Continues)

Address	Name	Coefficient	Default	
0x64	Channel 1 Mixer1	M11	0x7FFFFF	
0x65	Channel 1 Mixer2	M12	0x000000	
0x66	Channel 2 Mixer1	M21	0x000000	
0x67	Channel 2 Mixer2	M22	0x7FFFFF	
0x68~0x69	Reserve	Reserve		
0x6A	Channel 1 Prescale	C1PRS	0x7FFFFF	
0x6B	Channel 2 Prescale	C2PRS	0x7FFFFF	
0x6C	Channel 1 Postscale	C1POS	0x7FFFFF	
0x6D	Channel 2 Postscale	C2POS	0x7FFFFF	
0x6E	Reserve	Reserve	-	
0x6F	CH1.2 Power Clipping	PC1	0x200000	
0x70	Reserve	Reserve	· ·	
0x71	CH1.2 DRC Attack Threshold	DRC1_ATH	0x200000	
0x72	CH1.2 DRC Release Threshold	DRC1_RTH	0x80000	
0x73	CH3 DRC Attack Threshold	DRC2_ATH	0x200000	
0x74	CH3 DRC Release Threshold	DRC2_RTH	0x80000	
0x75	0x75 Noise Gate Attack Level		0x0001A	
0x76	0x76 Noise Gate Release Level		0x000053	
0x77	0x77 DRC1 Energy Coefficient		0x8000	
0x78	DRC2 Energy Coefficient	DRC2_EC	0x2000	

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly		
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds		
Average ramp-up rate (Tsmax to Tp)	3°C/second max.		
Liquidous temperature (TL) Time at liquidous (tL)	217°C 60-150 seconds		
Peak package body temperature (Tp)*	Max 260°C		
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds		
Average ramp-down rate (Tp to Tsmax)	6°C/second max.		
Time 25°C to peak temperature	8 minutes max.		

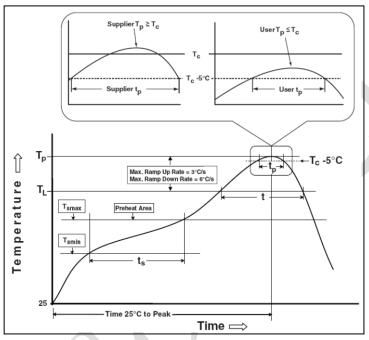


Figure 26 Classification Profile

PACKAGE INFORMATION

eTSSOP-24

Note: All dimensions in millimeters unless otherwise stated.