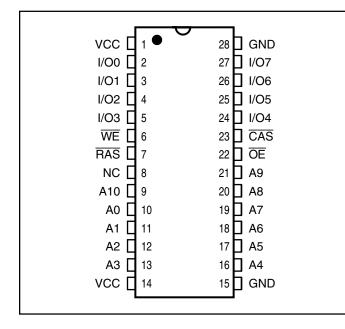
2M x 8 (16-MBIT) DYNAMIC RAM WITH FAST PAGE MODE

JUNE, 2001

ISSI[®]

FEATURES


- Fast Page Mode Access Cycle
- TTL compatible inputs and outputs
- Refresh Interval:
 -- 2.048 cvcles/32 ms
- Refresh Mode: RAS-Only, CAS-before-RAS (CBR), and Hidden
- Single power supply: 5V±10% or 3.3V ± 10%
- Byte Write and Byte Read operation via two CAS
- Industrial temperature range -40°C to 85°C

PRODUCT SERIES OVERVIEW

Part No.	Refresh	Voltage
IS41C8205	2K	5V ± 10%
IS41LV8205	2K	3.3V ± 10%

PIN CONFIGURATION

28 Pin SOJ, TSOP (Type II)

DESCRIPTION

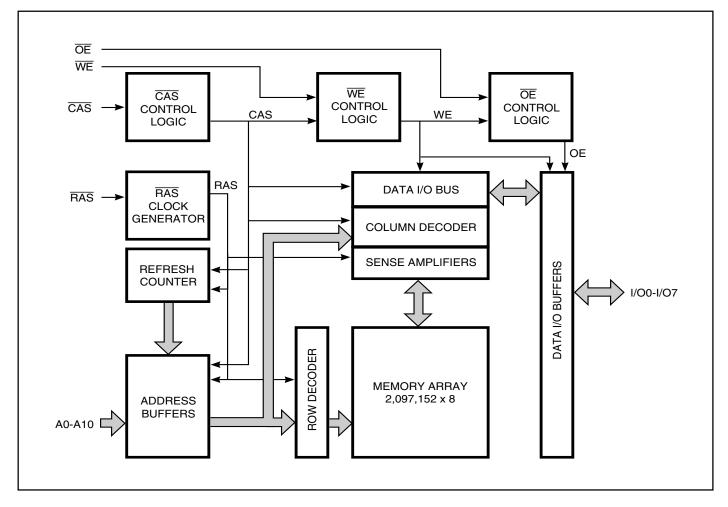
The *ISSI* IS41C8205andIS41LV8205are2,097,152x8-bithighperformance CMOS Dynamic Random Access Memory. The Fast Page Mode allows 2,048 random accesses within a single row with access cycle time as short as 20 ns per 4-bit word.

These features make the IS41C8205 and IS41LV8205 ideally suited for high-bandwidth graphics, digital signal processing, high-performance computing systems, and peripheral applications.

The IS41C8205 and IS41LV8205 are packaged in 28-pin 300-mil SOJ and 28-pin TSOP (Type II) with JEDEC standard pinouts.

KEY TIMING PARAMETERS

Parameter	-50	-60	Unit
RAS Access Time (trac)	50	60	ns
CAS Access Time (tcac)	13	15	ns
Column Address Access Time (tAA)	25	30	ns
Fast Page Mode Cycle Time (tPc)	20	25	ns
Read/Write Cycle Time (tRc)	84	104	ns


PIN DESCRIPTIONS

A0-A10	Address Inputs
I/O0-7	Data Inputs/Outputs
WE	Write Enable
ŌĒ	Output Enable
RAS	Row Address Strobe
CAS	Column Address Strobe
Vcc	Power
GND	Ground
NC	No Connection

ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Silicon Solution, Inc.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

Function	RAS	CAS	WE	ŌĒ	Address tr/tc	I/O
Standby	Н	Н	Х	Х	Х	High-Z
Read	L	L	Н	L	ROW/COL	Dout
Write: Word (Early Write)	L	L	L	Х	ROW/COL	Din
Read-Write	L	L	H→L	L→H	ROW/COL	Dout, Din
Hidden Refresh Read	$L \rightarrow H \rightarrow L$	L	Н	L	ROW/COL	Dout
Write ⁽¹⁾	$L \rightarrow H \rightarrow L$	L	L	Х	ROW/COL	Dout
RAS-Only Refresh	L	Н	Х	Х	ROW/NA	High-Z
CBR Refresh	H→L	L	Х	Х	Х	High-Z

Note:

1. EARLY WRITE only.

Functional Description

The IS41C8205 and IS41LV8205 are CMOS DRAMs optimized for high-speed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 11 address bits. These are entered 11 bits (A0-A10) at a time. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used the latter ten bits.

Memory Cycle

A memory cycle is initiated by bring \overrightarrow{RAS} LOW and it is terminated by returning both \overrightarrow{RAS} and \overrightarrow{CAS} HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum trans time has expired. A new cycle must not be initiated until the minimum precharge time trap, tcp has elapsed.

Read Cycle

A read cycle is initiated by the falling edge of \overline{CAS} or \overline{OE} , whichever occurs last, while holding \overline{WE} HIGH. The column address must be held for a minimum time specified by tAR. Data Out becomes valid only when tRAC, tAA, tCAC and tOEA are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters.

Write Cycle

A write cycle is initiated by the falling edge of \overline{CAS} and \overline{WE} , whichever occurs last. The input data must be valid at or before the falling edge of \overline{CAS} or \overline{WE} , whichever occurs last.

Auto Refresh Cycle

To retain data, 2,048 refresh cycles are required in each 32 ms period. There are two ways to refresh the memory:

- 1. By clocking each of the 2,048 row addresses (A0 through A10) with RAS at least once every 32 ms. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row.
- 2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored.

CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle.

Power-On

After application of the Vcc supply, an initial pause of 200 μ s is required followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS signal).

During power-on, it is recommended that \overline{RAS} track with Vcc or be held at a valid V_{IH} to avoid current surges.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameters		Rating	Unit
VT	Voltage on Any Pin Relative to GND	5V 3.3V	-1.0 to +7.0 -0.5 to +4.6	V
Vcc	Supply Voltage	5V 3.3V	-1.0 to +7.0 -0.5 to +4.6	V
Ιουτ	Output Current		50	mA
PD	Power Dissipation		1	W
ΤΑ	Commercial Operation Temperature Industrial Operation Temperature		0 to +70 -40 to +85	°C
Tstg	Storage Temperature		-55 to +125	°C

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.)

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	5V	4.5	5.0	5.5	V
		3.3V	3.0	3.3	3.6	
VIH	Input High Voltage	5V	2.4		Vcc + 1.0	V
		3.3V	2.0	—	Vcc + 0.3	
VIL	Input Low Voltage	5V	-1.0		0.8	V
		3.3V	-0.3	—	0.8	
TA	Commercial Ambient Temperature		0	_	70	°C
	Industrial Ambient Temperature		-40	—	85	°C

CAPACITANCE^(1,2)

Symbol	Parameter	Max.	Unit
CIN1	Input Capacitance: A0-A10(A11)	5	pF
CIN2	Input Capacitance: RAS, CAS, WE, OE	7	pF
Сю	Data Input/Output Capacitance: I/O0-I/O3	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz.

ELECTRICAL CHARACTERISTICS⁽¹⁾

(Recommended Operating Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Vcc	Speed	Min.	Max.	Unit
lı∟	Input Leakage Current	Any input $0V \le V_{IN} \le V_{CC}$ Other inputs not under test = $0V$			-5	5	μA
lio	Output Leakage Current	Output is disabled (Hi-Z) $0V \le V_{OUT} \le V_{CC}$			-5	5	μA
Vон	Output High Voltage Level	Іон = –5.0 mA, Vcc = 5V Іон = –2.0 mA, Vcc = 3.3V			2.4	_	V
Vol	Output Low Voltage Level	Io∟ = 4.2 mA, Vcc = 5V Io∟ = 2 mA, Vcc = 3.3V			_	0.4	V
Icc1	Standby Current: TTL	$\overline{RAS}, \overline{CAS} \ge V_{IH}$ Commercial	5V			2	mA
			3.3V		—	0.5	
		Industrial	5V		—	3	
			3.3V		—	2	
Icc2	Standby Current: CMOS	$\overline{RAS}, \overline{CAS} \ge Vcc - 0.2V$	5V		_	1	mA
	-		3.3V		—	0.5	
Іссз	Operating Current:	RAS, CAS,		-50		120	mA
	Random Read/Write ^(2,3) Average Power Supply Current	Address Cycling, tRc = tRc (min.)		-60	—	110	
Icc4	Operating Current:	$\overline{RAS} = V_{IL}, \overline{CAS} \ge V_{IH}$		-50	_	90	mA
	Fast Page Mode ^(2,3,4) Average Power Supply Current	trc = trc (min.)		-60	—	80	
Icc5	Refresh Current:	\overline{RAS} Cycling, $\overline{CAS} \ge V_{IH}$		-50		120	mA
	RAS-Only ^(2,3) Average Power Supply Current	tRC = tRC (min.)		-60	—	110	
Icc6	Refresh Current:	RAS, CAS Cycling		-50		120	mA
	CBR ^(2,3,5) Average Power Supply Current	trc = trc (min.)		-60	—	110	

Notes:

1. An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycles (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.

2. Dependent on cycle rates.

3. Specified values are obtained with minimum cycle time and the output open.

4. Column-address is changed once each Fast Page cycle.

5. Enables on-chip refresh and address counters.

AC CHARACTERISTICS^(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

			50		60	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Random READ or WRITE Cycle Time	84	_	104	—	ns
t RAC	Access Time from RAS ^(6, 7)	_	50	_	60	ns
tcac	Access Time from CAS ^(6, 8, 15)	_	13	_	15	ns
taa	Access Time from Column-Address ⁽⁶⁾	_	25	_	30	ns
tras	RAS Pulse Width	50	10K	60	10K	ns
trp	RAS Precharge Time	30		40		ns
tcas	CAS Pulse Width ⁽²³⁾	8	10K	10	10K	ns
tcp	CAS Precharge Time ⁽⁹⁾	9		9		ns
tcsн	CAS Hold Time (21)	38		40		ns
trcd	RAS to CAS Delay Time(10, 20)	12	37	14	45	ns
tasr	Row-Address Setup Time	0	_	0	_	ns
traн	Row-Address Hold Time	8	_	10	_	ns
tasc	Column-Address Setup Time ⁽²⁰⁾	0	_	0	_	ns
tсан	Column-Address Hold Time ⁽²⁰⁾	8	_	10	_	ns
tar	Column-Address Hold Time (referenced to RAS)	30	_	40	—	ns
trad	RAS to Column-Address Delay Time ⁽¹¹⁾	10	25	12	30	ns
tral	Column-Address to RAS Lead Time	25	_	30	_	ns
trpc	RAS to CAS Precharge Time	5	_	5	_	ns
trsн	RAS Hold Time	8	_	10	_	ns
trнср	RAS Hold Time from CAS Precharge	30	_	35	_	ns
tc∟z	CAS to Output in Low-Z ^(15, 24)	0	_	0	_	ns
tcrp	CAS to RAS Precharge Time ⁽²¹⁾	5	_	5	_	ns
top	Output Disable Time ^(19, 24)	3	15	3	15	ns
toe	Output Enable Time ^(15, 16)	_	12	_	15	ns
toed	Output Enable Data Delay (Write)	12	_	15	_	ns
tоенс	OE HIGH Hold Time from CAS HIGH	5	_	5	_	ns
toep	OE HIGH Pulse Width	10	_	10	_	ns
toes	OE LOW to CAS HIGH Setup Time	5	_	5	_	ns
trcs	Read Command Setup Time ^(17, 20)	0	_	0	_	ns
trrн	Read Command Hold Time (referenced to RAS) ⁽¹²⁾	0		0		ns
tвсн	Read Command Hold Time (referenced to CAS) ^(12, 17, 21)	0	—	0	—	ns
twcн	Write Command Hold Time ⁽¹⁷⁾	8	_	10	_	ns
twcr	Write Command Hold Time (referenced to RAS) ⁽¹⁷⁾	40	—	50	—	ns
twp	Write Command Pulse Width ⁽¹⁷⁾	8		10	_	ns
twpz	WE Pulse Widths to Disable Outputs	7		7	_	ns

AC CHARACTERISTICS (Continued)^(1,2,3,4,5,6)

(Recommended Operating Conditions unless otherwise noted.)

		-{	50	-	60	
Symbol	Parameter	Min.	Max.	Min.	Max.	Units
trwL	Write Command to RAS Lead Time(17)	13		15	_	ns
tcw∟	Write Command to CAS Lead Time ^(17, 21)	8		10	_	ns
twcs	Write Command Setup Time ^(14, 17, 20)	0	_	0	_	ns
t dhr	Data-in Hold Time (referenced to \overline{RAS})	39	_	39	_	ns
tасн	Column-Address Setup Time to CAS Precharge during WRITE Cycle	15	_	15	_	ns
tоен	OE Hold Time from WE during READ-MODIFY-WRITE cycle ⁽¹⁸⁾	8	—	10	—	ns
tos	Data-In Setup Time ^(15, 22)	0		0		ns
tdн	Data-In Hold Time ^(15, 22)	8	_	10	_	ns
trwc	READ-MODIFY-WRITE Cycle Time	108		133		ns
trwd	RAS to WE Delay Time during READ-MODIFY-WRITE Cycle ⁽¹⁴⁾	64	_	77	—	ns
tcwp	CAS to WE Delay Time ^(14, 20)	26	_	32	_	ns
tawd	Column-Address to WE Delay Time ⁽¹⁴⁾	39		47		ns
tPC	Fast Page Mode READ or WRITE Cycle Time	20	—	25	—	ns
trasp	RAS Pulse Width	50	100K	60	100K	ns
t CPA	Access Time from CAS Precharge ⁽¹⁵⁾	_	30		35	ns
t PRWC	READ-WRITE Cycle Time ⁽²⁴⁾	56	_	68	_	ns
tсон	Data Output Hold after CAS LOW	5		5	_	ns
toff	Output Buffer Turn-Off Delay from CAS or RAS ^(13,15,19, 24)	0	12	0	15	ns
twнz	Output Disable Delay from WE	3	10	3	10	ns
tcsr	CAS Setup Time (CBR REFRESH) ^(20, 25)	5		5		ns
tchr	CAS Hold Time (CBR REFRESH) ^(21, 25)	8		10		ns
tord	OE Setup Time prior to RAS during HIDDEN REFRESH Cycle	0	_	0	—	ns
tref	Auto Refresh Period 2,048 Cycles	_	32		32	ms
t⊤	Transition Time (Rise or Fall) ^(2, 3)	1	50	1	50	ns

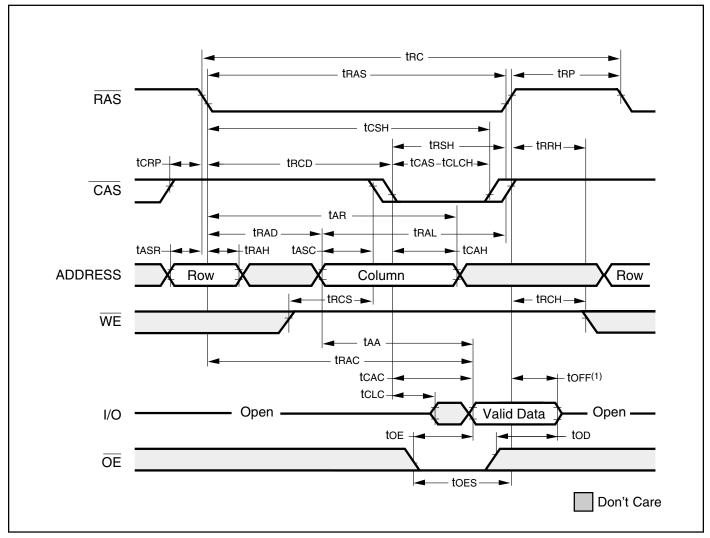
AC TEST CONDITIONS

Output load: Two TTL Loads and 50 pF (Vcc = $5.0V \pm 10\%$) One TTL Load and 50 pF (Vcc = $3.3V \pm 10\%$)

Input timing reference levels: $V_{IH} = 2.4V$, $V_{IL} = 0.8V$ (Vcc = 5.0V ±10%); $V_{IH} = 2.0V$, $V_{IL} = 0.8V$ (Vcc = 3.3V ±10%)

Output timing reference levels: VOH = 2.0V, VOL = 0.8V ($Vcc = 5V \pm 10\%$, $3.3V \pm 10\%$)

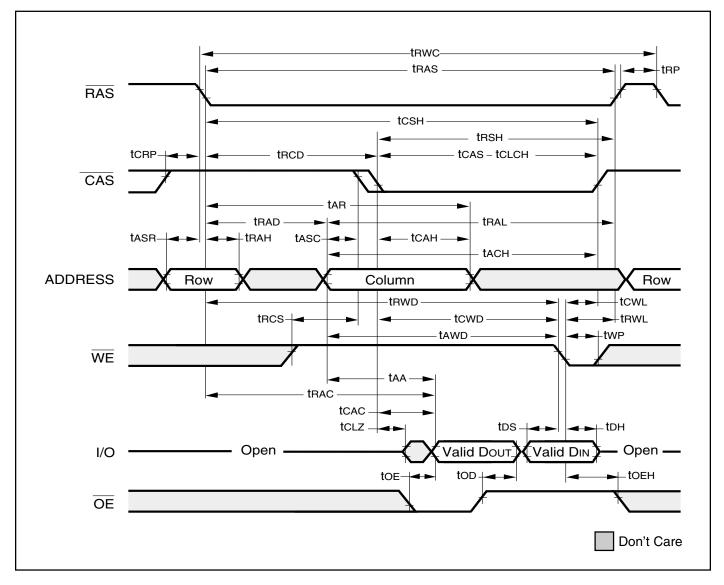
IS41C8205 IS41LV8205


Notes:

- 1. An initial pause of 200 µs is required after power-up followed by eight RAS refresh cycle (RAS-Only or CBR) before proper device operation is assured. The eight RAS cycles wake-up should be repeated any time the tREF refresh requirement is exceeded.
- 2. Vi⊢ (MIN) and Vi∟ (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between Vi⊢ and Vi⊢ (or between Vi∟ and Vi⊢) and assume to be 1 ns for all inputs.
- 3. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 4. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
- 5. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 6. Measured with a load equivalent to one TTL gate and 50 pF.
- 7. Assumes that tRCD tRCD (MAX). If tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- 8. Assumes that tRCD tRCD (MAX).
- 9. If CAS is LOW at the falling edge of RAS, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, CAS and RAS must be pulsed for tcp.
- 10. Operation with the tRCD (MAX) limit ensures that tRAC (MAX) can be met. tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tCAC.
- 11. Operation within the tRAD (MAX) limit ensures that tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified tRAD (MAX) limit, access time is controlled exclusively by tAA.
- 12. Either tRCH or tRRH must be satisfied for a READ cycle.
- 13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 14. twcs, tRWD, tawD and tcwD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If tRWD tRWD (MIN), tawD tawD (MIN) and tcwD tcwD (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of I/O (at access time and until CAS and RAS or OE go back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
- 15. Output parameter (I/O) is referenced to corresponding \overline{CAS} input.
- 16. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, I/O goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible.
- 17. Write command is defined as $\overline{\text{WE}}$ going low.
- 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both top and toeH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The I/Os will provide the previously written data if CAS remains LOW and OE is taken back to LOW after toEH is met.
- 19. The I/Os are in open during READ cycles once top or topp occur.
- 20. Determined by falling edge of \overline{CAS} .
- 21. Determined by rising edge of \overline{CAS} .
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or <u>READ-MODIFY-WRITE cycles</u>.
- 23. CAS must meet minimum pulse width.
- 24. The 3 ns minimum is a parameter guaranteed by design.
- 25. Enables on-chip refresh and address counters.

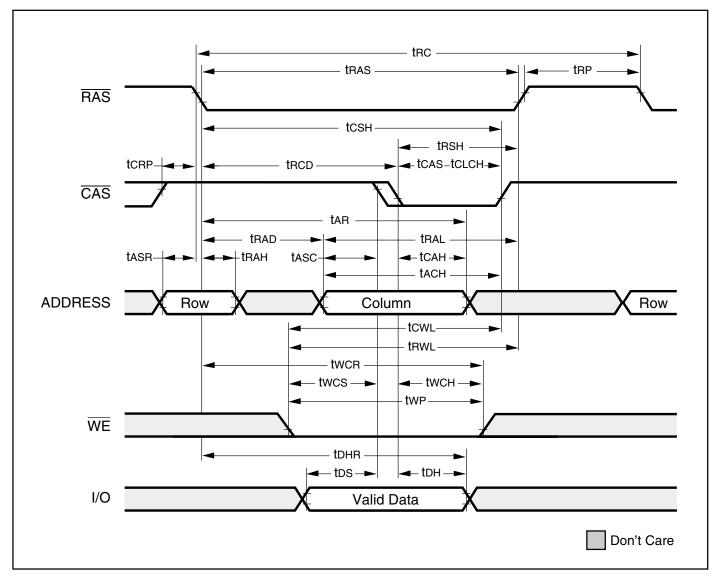
IS41C8205 IS41LV8205

READCYCLE

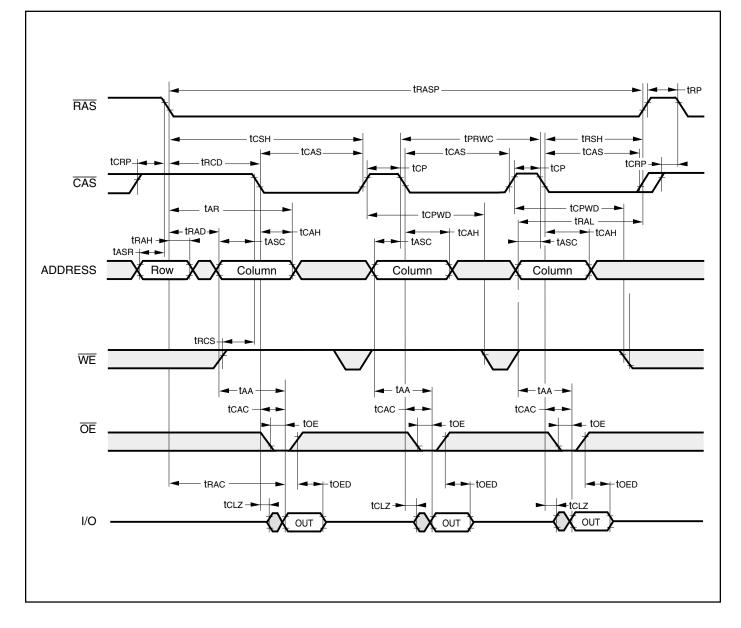


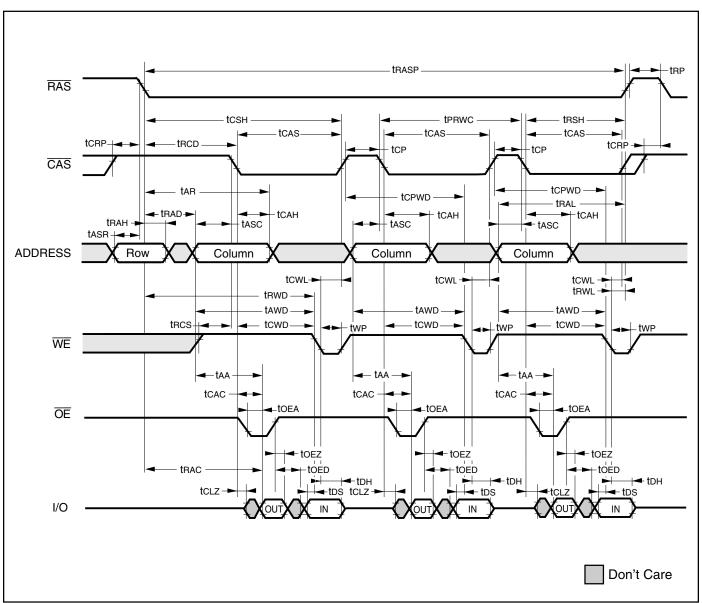
Note:

1. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

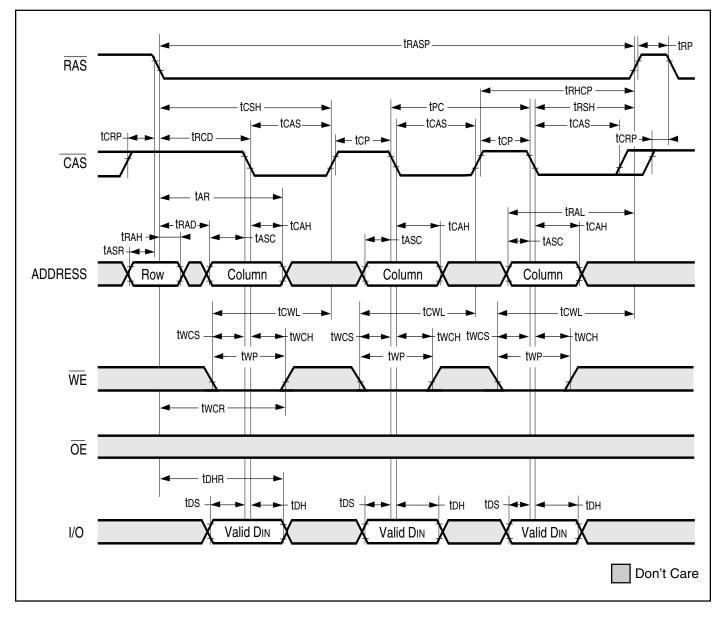


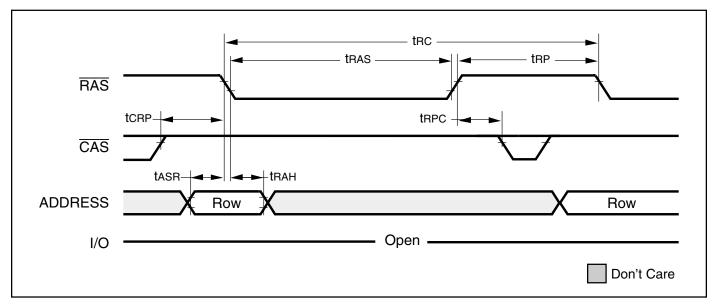
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE CYCLES)


ISSI[®]

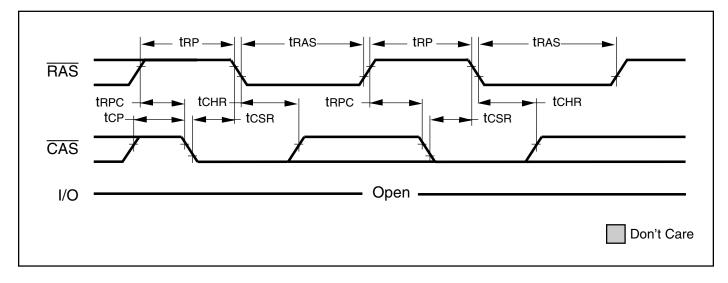

EARLY WRITE CYCLE (OE = DON'T CARE)

FAST-PAGE-MODE READ CYCLE

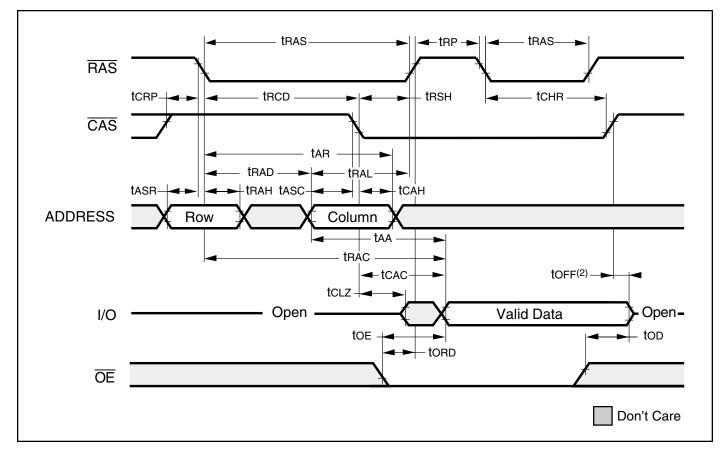



FAST-PAGE-MODE READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles)

FAST PAGE MODE EARLY WRITE CYCLE



RAS-ONLY REFRESH CYCLE (\overline{OE} , \overline{WE} = DON'T CARE)



CBR REFRESH CYCLE (Addresses; WE, OE = DON'T CARE)

HIDDEN REFRESH CYCLE⁽¹⁾ (\overline{WE} = HIGH; \overline{OE} = LOW)

ORDERING INFORMATION

Commercial Range: 0°C to 70°C Voltage: 5V

Speed (ns)	Order Part No.	Package
50	IS41C8205-50J	300-mil SOJ
60	IS41C8205-60J	300-mil SOJ

Voltage: 3.3V

Speed (ns) Order Part No.	Package
50	IS41LV8205-50J	300-mil SOJ
60	IS41LV8205-60J	300-mil SOJ

ORDERING INFORMATION

Industrial Range: -40°C to 85°C Voltage: 5V

Speed (ns)	Order Part No.	Package
50	IS41C8205-50JI	300-mil SOJ
60	IS41C8205-60JI	300-mil SOJ

Voltage: 3.3V

Speed (ns)	Order Part No.	Package
50	IS41LV8205-50JI	300-mil SOJ
60	IS41LV8205-60JI	300-mil SOJ

Integrated Silicon Solution, Inc.

2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774 Fax: (408) 588-0806 E-mail: sales@issi.com www.issi.com