

Symbol
Test Conditions
Characteristic Values
($T_{J}=25^{\circ} \mathrm{C}$, unless otherwise specified)
min. typ. $^{\text {ty }}$ max.

IXSH 35N120B IXST 35N120B

TO-268 (IXST)

$\mathrm{G}=$ Gate
C = Collector
$\mathrm{E}=$ Emitter

Features

- Epitaxial Silicon drift region
- fast switching
- small tail current
- MOS gate turn-on for drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies
- DC choppers IXST 35N120B

Symbol	Test Conditions $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text {, unless } \mathrm{c}\right.$	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. ${ }^{\text {typ. }}$ \| max.	
$\mathrm{g}_{\text {ts }}$	$I_{C}=I_{C 90} ; V_{C E}=10 \mathrm{~V},$	23	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 3600 \\ 260 \\ 75 \\ \hline \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {c90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{~V}_{\text {CES }}$	$\begin{array}{r} 120 \\ 33 \\ 49 \end{array}$	nC nc nC
$\begin{aligned} & t_{\mathrm{dol(0)}} \\ & t_{\text {ri }} \\ & t_{\mathrm{d}(\mathrm{lof})} \\ & t_{\mathrm{ti}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{R}_{G}=5 \Omega \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{Nato} \end{aligned}$ $\text { Note } 3$	$\begin{array}{r} 36 \\ 27 \\ 160 \\ 180 \\ 5 \end{array}$	$\begin{array}{rl} & \mathrm{ns} \\ & \mathrm{~ns} \\ 300 & \mathrm{~ns} \\ 300 & \mathrm{~ns} \\ 9 & \mathrm{~mJ} \end{array}$
	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {c90 }}, \mathrm{V}_{G E}=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{G}}=5 \Omega, \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}} \end{aligned}$ Note 3	$\begin{array}{r} 38 \\ 29 \\ 2.5 \\ 240 \\ 340 \\ 9 \end{array}$	ns ns mJ ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{tusc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$	(TO-247)	0.25	$\begin{array}{r} 0.42 \mathrm{KW} \\ \mathrm{KW} \end{array}$

Notes:1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.
2. Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$
3. Switching times may increase for V_{CE} (Clamp) $>0.8 \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}.

TO-247 AD Outline (IXSH)

TO-268 Outline (IXST)

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.9	5.1	. 193	. 201
A_{1}	2.7	2.9	. 106	. 114
A_{2}	. 02	. 25	. 001	. 010
b	1.15	1.45	. 045	. 057
b_{2}	1.9	2.1	. 75	. 83
C	. 4	. 65	. 016	. 026
D	13.80	14.00	. 543	. 551
E	15.85	16.05	. 624	. 632
E_{1}	13.3	13.6	. 524	. 535
e		BSC		BSC
H	18.70	19.10	. 736	. 752
L	2.40	2.70	. 094	. 106
L1	1.20	1.40	. 047	. 055
L2	1.00	1.15	. 039	. 045
L3		BSC	. 0	BSC
L4	3.80	4.10	. 150	. 161

