20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

N-Channel JFETs

J/SST/U308 Series

J308	SST308	U309
J309	SST309	U310
J310	SST310	

TELEPHONE: (973) 376-2922

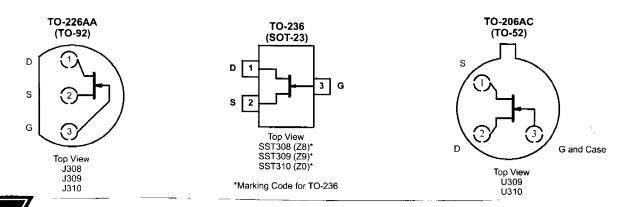
(212) 227-6005 FAX: (973) 376-8960

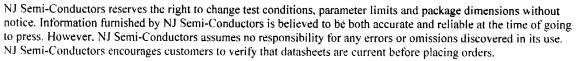
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)		
J308	-1 to -6.5	-25	8			
J309	-1 to -4	-25	10	12		
J310	-2 to -6.5	-25	8	24		
SST308	-1 to -6.5	-25	8	12		
SST309	-1 to -4	-25	10	12		
SST310	2 to6.5	-25	, 8	24		
U309	-1 to -4	-25	10	12		
U310	-2.5 to -6	-25	10	24		

FEATURES

- Excellent High Frequency Gain: Gps 11.5 dB @ 450 MHz
- Very Low Noise: 2.7 dB @ 450 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation
- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS


- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches


DESCRIPTION

The J/SST/U308 series offers superb amplification characteristics. Of special interest is its high-frequency performance. Even at 450 MHz, this series offers high power gain at low noise.

Low-cost J series TO-226AA (TO-92) packaging supports automated assembly with tape-and-reel options. The SST series TO-236 (SOT-23) package provides surface-mount capabilities and is available with tape-and-reel options. The U series hermetically-sealed TO-206AC (TO-52) package supports full military processing. (See Military and Packaging Information for further details.)

For similar dual products packaged in the TO-78, see the U430/431 data sheet.

Quality Semi-Conductors

BENEFITS
······

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Vo	oltage
Gate Current :	(J/SST Prefixes) 10 mA
	(U Prefix) 20 mA
Lead Temperature (1/16" from	m case for 10 sec.) 300°C
Storage Temperature :	(J/SST Prefixes)
	(U Prefix) –65 to 175°C

Operating Junction Tempe	erature
Power Dissipation :	(J/SST Prefixes) ^a 350 mW (U Prefix) ^b 500 mW

Notes

a. Derate 2.8 mW/°C above 25°C b. Derate 4 mW/°C above 25°C

						Limits						
						J/SST308		J/SST309		J/SST310		1
Parameter	Symbol	Test Cor	Test Conditions		Тура	Min	Max	Min	Max	Min	Max	Unit
Static						•			•			
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \ \mu A$, $V_{DS} = 0 \ V$			-35	-25		-25		-25		v
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 V	/, I _D = 1 nA	N NOT		-1	-6.5	-1	-4	-2	-6.5	V
Saturation Drain Current ^b	IDSS	V _{DS} = 10 V				12	60	12	30	24	60	mA
Gate Reverse Current	IGSS	V _{GS} = -15 \	V, V _{DS} = 0	V	-0.002		-1		-1		-1	nA
	GSS		T _A = 1	25°C	0.001		-1		-1		-1	μA
Gate Operating Current	۱ _G	V _{DG} = 9 V, I _D = 10 mA			-15							рА
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 V, I_D = 1 mA$		35							Ω	
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA V _{DS} = 0 V	A V	J	0.7		1		1		1	V
Dynamic												_
Common-Source Forward Transconductance	9fs	V _{DS} = 10 V	′, I _D = 10 m	hΑ	14	8		10		8		mS
Common-Source Output Conductance	9 _{os}	f = 1	kHz		110		250		250		250	μS
Common-Source	C _{iss}			J	4		5		5		5	4
Input Capacitance	UISS	V _{DS} = 10 V _{GS} = -10 f = 1 MHz	V	SST	4					L		DF
Common-Source	Crss	f = 1 MHz	2	J	1.9		2.5		2.5		2.5	
Reverse Transfer Capacitance	*135			SST	1.9					ļ		
Equivalent Input Noise Voltage	ēn		/, I _D = 10 mA 100 Hz		6							nV∕ √Hz
High Frequency										_		
Common-Gate				5 MHz	14							
Forward Transconductance	9tg			0 MHz	13							_ mS
Common-Gate	9 _{og}	V _{DS} = 10 V I _D = 10 mA	f = 105 MHz		0.16					<u> </u>	1	4
Output Conductance				0 MHz	0.55					_		
Common-Gate Power Gain ^c	Gpq			5 MHz	16			<u> </u>			<u> </u>	-
	r,,			0 MHz	11.5 1.5							dB
Noise Figure	NF		f = 105 MHz f = 450 MHz		2.7		-	-	_			-

 Notes

 a.
 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

 b.
 Pulse test: PW ≤ 300 µs duty cycle ≤ 3%.

 c.
 Gain (G_{pg}) measured at optimum input noise match.

						Lin	nits		
				U309		U310		1	
Parameter	Symbol	Test Conditions		Тура	Min	Max	Min	Max	Unit
Static									
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = −1 μA	-35	-25		-25		v	
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 \	/, I _D = 1 nA	•	-1	-4	-2.5	-6	V
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 10 V	, V _{GS} = 0 V		12	30	24	60	mA
Gate Reverse Current		V _{GS} = -15	/, V _{DS} = 0 V	-0.002		-0.15		-0.15	nA
	I _{GSS}		T _A = 125°C	-0.001		-0.15	[0.15	μA
Gate Operating Current	I _G	V _{DG} = 9 V, I _D = 10 mA		-15					pА
Drain-Source On-Resistance	۲DS(on)	V _{GS} = 0 V	35					Ω	
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA , V _{DS} = 0 V		0.7		1		1	V
Dynamic									
Common-Source Forward Transconductance	9fs	V _{DS} = 10 V	, I _D = 10 mA kHz	14	10		10		mS
Common-Source Output Conductance	9 _{os}	f = 1	кНz	110		250		250	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10 V, f = 1	4		5		5	pF	
Common-Source Reverse Transfer Capacitance	C _{rss}		1.9		2.5		2.5		
Equivalent Input Noise Voltage	ēn	V _{DS} = 10 V f = 1	, I _D = 10 mA 00 Hz	6					nV∕ √Hz
High Frequency									
Common-Gate			f = 105 MHz	14					
Forward Transconductance	9fg		f = 450 MHz	13	1	1			1
Common-Gate			f = 105 MHz	0.16	†	1			— m\$ —
Output Conductance	9og	V _{DS} ≂ 10 V	f = 450 MHz	0.55	1		1		
0		$I_D = 10 \text{ mA}$	f = 105 MHz	16	14		14		
Common-Gate Power Gain ^c	G _{pg}		f = 450 MHz	11.5	10		10		ав
Nutrie Plana			f = 105 MHz	1.5	1	2		2	1 "
Noise Figure	NF		f = 450 MHz		1	3.5	1	3.5	1

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW ≤ 300 µs duty cycle ≤ 3%. c. Gain (G_{pg}) measured at optimum input noise match.