




# COMPACT POWER RELAY FOR INDUCTIVE LOAD

# JM-RELAYS



## • Excellent contact welding resistance High contact pressure, a forced opening mechanism, and a forced wiping mechanism realizes an excellent contact welding resistance.

## High breakdown voltage and surge resistant relay

More than 6.4 mm .252 inch maintained for the insulation distance between contacts and coil, and the breakdown voltage between contacts and coil is 5,000 V for 1 minute. In addition, the surge resistance between contacts and coil is greater than 10,000 V.

#### • Resistant to external force

900 mW

An absorber mechanism is used on the load terminals, giving a large improvement in characteristics variations caused by the external force during FASTON placement/removal.

#### • Flux resistance mechanism

The terminal area is plugged with resin to prevent flux seepage during PCB mounting. (TMP type)

## Conforms to the various safety standards

UL, CSA approved.

TÜV, VDE under application.

## • The line up can support economical mounting methods.

The relay are equipped with a drive terminal (coil terminal) on one side for PCBs, and a load terminal (tab terminal #250) on the reverse side. The line up includes the TM type which can be attached directly to the PCB composing a drive circuit, and the TMP type which supports economical wiring. The TMP type can also be directly attached, and a high capacity load can be wired to the tab terminal.

## FEATURES

## Compact, high-capacity, and resistant to inductive loads

The relay is a compact  $16\times30.4\times26.5$  mm  $.630\times1.197\times1.043$  inch. It can control an inductive load ( $\cos\phi=0.7$ ) with inrush current of 70 A and steady state current of 20 A.

## **SPECIFICATIONS**

### Contact

| Arrangem                  | nent                            | 1 Form A                                    |                                                                                     |                 |  |  |  |
|---------------------------|---------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|-----------------|--|--|--|
|                           | itact resistar<br>ge drop 6 V I | $30 \text{ m}\Omega$ (Cd free type: 100 mΩ) |                                                                                     |                 |  |  |  |
| Contact n                 | naterial                        |                                             |                                                                                     | Silver alloy    |  |  |  |
|                           | Nominal sv                      | vitching ca                                 | 20 A 250 V AC                                                                       |                 |  |  |  |
| Rating                    | Max. switch                     | ning powe                                   | 5,000 VA                                                                            |                 |  |  |  |
| (resistive load)          | Max. switch                     | ning volta                                  | 250 V AC                                                                            |                 |  |  |  |
| ,                         | Max. switch                     | ning curre                                  | 20 A                                                                                |                 |  |  |  |
|                           | Mechanica                       | l (at 180 d                                 | 106                                                                                 |                 |  |  |  |
|                           |                                 | Resistive<br>V AC (co                       | e load 20 A, 250<br>osφ = 1)                                                        | 10⁵             |  |  |  |
| Expected life (min. ope.) |                                 | Inductive<br>load                           | Inrush 70 A, Steady<br>20 A (250 V AC<br>cosφ = 0.7)                                | 10 <sup>5</sup> |  |  |  |
| opo.,                     |                                 |                                             | Inrush 80 A, Cut-off<br>80 A (When the<br>motor is locked) (250<br>V AC cosp = 0.7) | 1.5×10³         |  |  |  |
| Coil                      |                                 |                                             |                                                                                     |                 |  |  |  |

## Nominal operating power Remarks

- \* Specifications will vary with foreign standards certification ratings.
- \*1 Measurement at same location as "Initial breakdown voltage" section
- \*2 Detection current: 10mA
- $^{\star_3}$  Wave is standard shock voltage of  $\pm 1.2 \times 50 \mu s$  according to JEC-212-1981
- \*4 Excluding contact bounce time
- \*5 Half-wave pulse of sine wave: 11ms; detection time: 10μs
- \*6 Half-wave pulse of sine wave: 6ms
- \*7 Detection time: 10μs
- \*8 Refer to 5. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 24).

### Characteristics

| Max. operating speed                                         |                           |          | 180 cpm                                                                    |  |  |  |  |
|--------------------------------------------------------------|---------------------------|----------|----------------------------------------------------------------------------|--|--|--|--|
| Initial insulat                                              | ion resi                  | stance*1 | Min. 100 MΩ (at 500 V DC)                                                  |  |  |  |  |
| Initial                                                      | Between open contacts     |          | 1,000 Vrms for 1 min.                                                      |  |  |  |  |
| breakdown<br>voltage*2                                       | Between contacts and coil |          | 5,000 Vrms for 1 min.                                                      |  |  |  |  |
| Surge voltage between contact and coil*3                     |                           |          | Min. 10,000 V                                                              |  |  |  |  |
| Operate time*4<br>(at nominal voltage)(at 20°C)              |                           |          | Max. 20ms (Approx. 8 ms)                                                   |  |  |  |  |
| Release time (without diode)*4 (at nominal voltage)(at 20°C) |                           |          | Max. 10ms (Approx. 3 ms)                                                   |  |  |  |  |
| Temperature rise (at 60°C)                                   |                           |          | Max. 55°C (Contact switching current: 20 A/voltage applied to coil: 100%V) |  |  |  |  |
| Shock                                                        | Functional*5              |          | Min. 98 m/s <sup>2</sup> {10 G}                                            |  |  |  |  |
| resistance                                                   | Destructive*6             |          | Min. 980 m/s <sup>2</sup> {100 G}                                          |  |  |  |  |
| Vibration                                                    | Functional*7              |          | 10 to 55 Hz at double amplitude of 1.6 mm                                  |  |  |  |  |
| resistance                                                   | Destructive               |          | 10 to 55 Hz at double amplitude of 2 mm                                    |  |  |  |  |
| Conditions for ope<br>transport and stor                     | age*8 temp.               |          | -40°C to +60°C<br>-40°F to +140°F                                          |  |  |  |  |
| (Not freezing and ing at low tempera                         |                           |          | 5 to 85% R.H.                                                              |  |  |  |  |
|                                                              | Slim TMP                  |          | Approx. 28 g .99 oz                                                        |  |  |  |  |
| Unit weight                                                  | Flat TI                   | ИP       | Approx. 32 g 1.13 oz                                                       |  |  |  |  |
|                                                              | Flat TM                   |          | Approx. 33 g 1.16 oz                                                       |  |  |  |  |

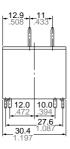
#### TYPICAL APPLICATIONS **ORDERING INFORMATION**

- Compressor and heater control in air conditioners
- Power control in hot air type heaters
- Magnetron control in microwave ovens
- · Lamp and motor control in OA equipment such as copiers and facsimiles.

|                     | Ex. | JM 1a             | _ [N          | _ [2                           | <u>z</u> ] — | TMP -                                                  | DC 24 | V                           |  |
|---------------------|-----|-------------------|---------------|--------------------------------|--------------|--------------------------------------------------------|-------|-----------------------------|--|
| Contact arrangement |     | Pickup voltage    |               | Classification of type         |              | Mounting classification                                |       | Coil voltage                |  |
| 1a: 1 Form A        |     | N: 70%<br>nominal | of<br>voltage | Nil: Slim type<br>Z: Flat type |              | TMP: TMP type<br>TM: TM type<br>P: PCB type(Slim type) |       | DC 5, 6, 9, 12,<br>24, 48 V |  |

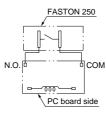
(Notes) 1. Standard packing: Carton: 50pcs. Case: 200pcs. 2. For Cd free contact material type, add suffix "-F".

UL/CSA, VDE approved type is standard.


## TYPES AND COIL DATA (at 20°C 68°F)

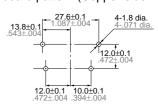
| Part No. Slim Flat |               |                  |                 |                  | Pick-up | Drop-out | Nominal operating | Coil<br>resis-     | Nominal operating | Max.<br>allowable |
|--------------------|---------------|------------------|-----------------|------------------|---------|----------|-------------------|--------------------|-------------------|-------------------|
| TMP                | РСВ           | TMP              | TM              | voltage, V<br>DC | voltage | voltage, | current,<br>mA    | tance, Ω<br>(±10%) | power,<br>mW      | voltage,<br>V DC  |
| JM1aN-TMP-DC5V     | JM1aN-P-DC5V  | JM1aN-ZTMP-DC5V  | JM1aN-ZTM-DC5V  | 5                | 3.5     | 0.5      | 180               | 27.8               | 900               | 5.5               |
| JM1aN-TMP-DC6V     | JM1aN-P-DC6V  | JM1aN-ZTMP-DC6V  | JM1aN-ZTM-DC6V  | 6                | 4.2     | 0.6      | 150               | 40                 | 900               | 6.6               |
| JM1aN-TMP-DC9V     | JM1aN-P-DC9V  | JM1aN-ZTMP-DC9V  | JM1aN-ZTM-DC9V  | 9                | 6.3     | 0.9      | 100               | 90                 | 900               | 9.9               |
| JM1aN-TMP-DC12V    | JM1aN-P-DC12V | JM1aN-ZTMP-DC12V | JM1aN-ZTM-DC12V | 12               | 8.4     | 1.2      | 75                | 160                | 900               | 13.2              |
| JM1aN-TMP-DC24V    | JM1aN-P-DC24V | JM1aN-ZTMP-DC24V | JM1aN-ZTM-DC24V | 24               | 16.8    | 2.4      | 37.5              | 640                | 900               | 26.4              |
| JM1aN-TMP-DC48V    | JM1aN-P-DC48V | JM1aN-ZTMP-DC48V | JM1aN-ZTM-DC48V | 48               | 33.6    | 4.8      | 18.75             | 2,560              | 900               | 52.8              |

## **DIMENSIONS**


Slim TMP type



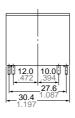





Schematic

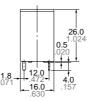


## PC board pattern (Copper-side view)


mm inch

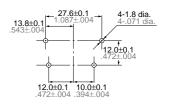


General tolerance: ±0.4 ±.016


## Slim PCB type



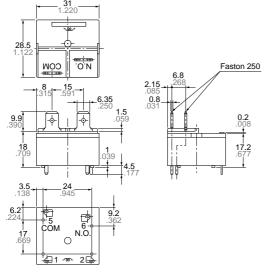




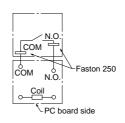




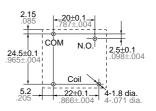

## Schematic □СОМ N.O. PC board side


### PC board pattern (Copper-side view)




Tolerance: ±0.1 ±.004 General tolerance: ±0.4 ±.016

Flat TMP type mm inch

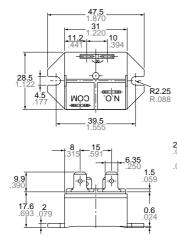




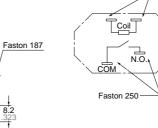

Schematic



PC board pattern (Bottom view)

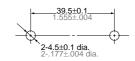



General tolerance: ±0.4 ±.016


Tolerance: ±0.1 ±.004

### Flat TM type

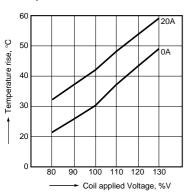





Faston 187

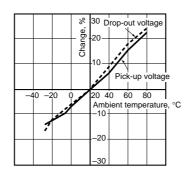


Schematic

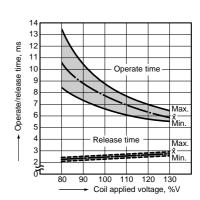

Panel cutout



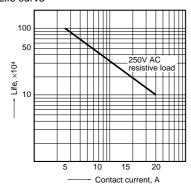
General tolerance: ±0.4 ±.016


## REFERENCE DATA

1. Coil temperature rise Place to be measured: Inside of coil Ambient temperature: 25°C 77°F

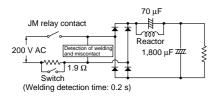



2. Ambient temperature characteristics Sample: JM1aN-TMP-DC24V, 5 pcs.

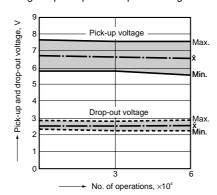

Faston 250



3. Operate/release time Sample: JM1aN-TMP-DC24V, 5 pcs.




### 4. Life curve



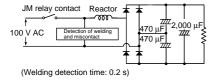

## 5-(1). 200 V AC electrical life test (200 V AC inverter dummy load)

Sample: JM1aN-TMP-DC12V, 6 pcs. Load: Inrush 108 A, Steady 15 A, Inverter dummy 200 V AC Switching frequency: ON 5 s, OFF 5 s Circuit

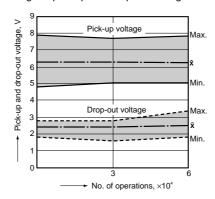


#### Change of pick-up and drop-out voltage




Contact welding: 0 time Miscontact: 0 time

### 5-(2). 100 V AC electrical life test (100 V AC inverter dummy load)


Sample: JM1aN-TMP-DC12V, 20 pcs. Load: Inrush 224 A, Steady 20A, Inverter dummy 100 V AC

Inverter dummy 100 V AC Switching frequency: ON 10 s, OFF 10 s

Circuit



Change of pick-up and drop-out voltage



Contact welding: 0 time Miscontact: 0 time

### 5-(3). Inrush 70 A, Steady 20 A, 250 V AC compressor dummy load

Sample: JM1aN-TMP-DC12V, 6 pcs.

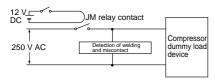
Load: (Endurance) inrush 70 A  $\cos \varphi = 0.7$  (0.3)

s), steady 20A pf = 0.9, 250V AC compressor dummy

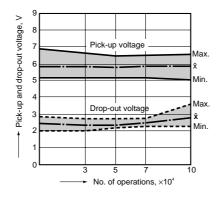
(Overload) 80A  $\cos \varphi = 0.7$ , 250 V AC

No. of operations: (Endurance) 10<sup>5</sup> times (Overload) 1,000 times (after

endurance test)


Switching frequency: (Endurance) ON 1.5 s,

OFF 1.5 s


(Overload) ON 3 s,

OFF 2 min., 57 s

Circuit (endurance)



Change of pick-up and drop-out voltage



Contact welding: 0 time Miscontact: 0 time

## For Cautions for Use, see Relay Technical Information (Page 11 to 39).