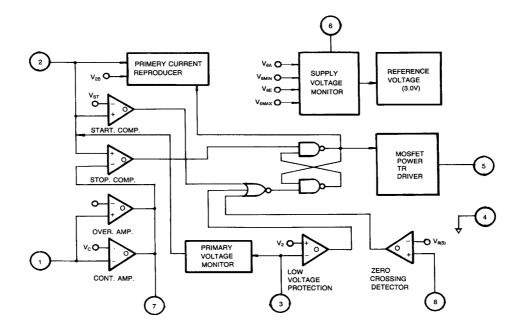

KA7515 SMPS Controller

Features


- Good load regulation over a wide load for external components.
- Internal soft-start for quiet start-up.
- Start-up supply current less than 1.6mA.
- Switch-oft supply current less than 10mA.
- Burst operation under short-circuit conditions
- Thermal shutdown through over-temperature.

Description

The KA7515 provides the necessary features to implement switching mode power supply with a minimal external parts count. Internally implemented circuits include 3V reference voltage block, supply voltage monitoring block to control output through supply voltage and overload amplifier block to control output by external road variation. The KA7515 controls the power MOSFET and performs all necessary regulation and monitoring function in free running flyback converters.

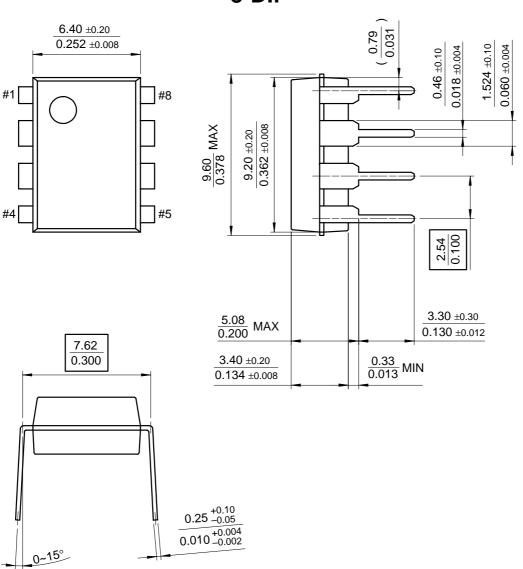
Internal Block Diagram

Absolute Maximum Ratings (TA=25°C)

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	20	V
Collector Supply Voltage	Vc	13	V
Output current, Sink or Source	lo	12	mA
Operating Temperature	TOPR	-25 ~ + 85	°C
Storage Temperature	TSTG	-65 ~ + 150	°C

Electrical Characteristics (TA = 25°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Start-up Hysteresis						
Start-up Current (1)	IST1	V6 = 5V	-	0.5	0.75	mA
Start-up Current (2)	IST2	V ₆ = 8V	-	1.0	1.5	mA
Start-up Current (3)	IST3	V6 = V6E	-	1.1	1.6	mA
Switch On Voltage	V6E	V1 = V4 = V8 = GND	11	12	13	V
Switch Off Voltage	V6A	$V_1 = V_4 = V_8 = GND$	6	6.5	7	V
Switch On Current	l6E	$V_1 = V_4 = V_8 = GND$	-	9.0	12.0	mA
Switch Off Current	I _{6A}	$V_1 = V_4 = V_8 = GND$	-	8.0	10.0	mA
Voltage Limiter (Pin 2)	V2(MAX)	V ₆ = 10V (IC Switch-Off)	5.8	6.8	7.8	V
Voltage Limiter (Pin 3)	V3(MAX)	V ₆ = 10V (IC Switch-Off)	5.8	6.8	7.8	V
Control Input Voltage	VI(CTRL)	V ₆ = 10V (IC Switch-On)	370	400	430	mV
Gain In Control Range	GV(CTRL)	V ₆ = 10V (IC Switch-On)	48	51	54	dB
Basic Value	V2B	V ₆ = 10V (IC Switch-On)	0.9	1.0	1.15	V
Maximum Peak Value	V ₂ (MAX)	V ₆ = 10V (IC Switch-On)	2.8	3.0	3.4	V
Overload Range Upper Limit	Vih	V ₆ = 10V (IC Switch-On)	370	400	430	mV
Overload Range Lower Limit	VIL	V ₆ = 10V (IC Switch-On)	60	200	290	mV
Gain In Overload Range	GV(OVER)	V ₆ = 10V (IC Switch-On)	1	2	3	dB
Input Current	l ₁	V ₆ = 10V (IC Switch-On)	90	140	180	μA
In Short-Circuit Operation						
Peak Value (1)	V2(PK)1	V1 = 3.5V	2.8	3.0	3.4	V
Peak Value (2)	V2(PK)2	V ₁ = 0V	2.35	2.65	2.95	V
Output Pulse Width	tw1	V1 = 3.5V	3.5	5	6.5	μs
Output Pulse Width	t _W 2	$V_1 = 0V$	2.5	4	5.5	μs
Current Consumption (1)	l61	V1 = 3.5V	-	12	15	mA
Current Consumption (2)	I ₆ 2	$V_1 = 0V$	-	12	15	mA
Overload Point	-l2	$V_3 = V_4, V_2 = 0V$	400	660	850	μA


Correction Current						
Positive Value	V8(P)	I8 = 1mA	0.7	0.75	0.8	V
Negative Value	V8(N)	l8 = -1mA	0.15	0.22	0.25	V
Threshold Value	V8(S)	-	40	50	60	mV
Delay Time	tD	-	-	0.4	0.7	μs
Saturation Voltage (1)	VSAT1	I5 = -1.0A	-	2.5	3.0	V
Saturation Voltage (2)	VSAT2	l5 = 1.0A	-	2.5	3.0	V
Rising Edge	+dV5/dt	V ₁ = 3.5V	4.0	50	-	V/µs
Falling Edge	-dV5/dt	V ₁ = 3.5V	50	75	-	V/µs
Under VTG. Protection (1)	$\Delta V_{6}(UV)$	$V_{6MIN} = V_{6a} + \Delta V_6$	0.3	0.5	1	V
Over VTG. Protection	V _{6(MAX)}	-	14	15	16	V
Under VTG. Protection (2)	V3(UV)	-	0.925	1	1.075	V
Overtemperature	Tj	-	150	175	200	°C
Protection						
Voltage Pin 3	V ₃	l3 = 1mA	-	0.35	0.5	V

Electrical Characteristics (TA = 25°C) (Continued)

Mechanical Dimensions

Package

Dimensions in millimeters

8-DIP

Ordering Information

Product Number	Package	Operating Temperature
KA7515	8-DIP	-25 ~ + 85°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com