

General Description

The Kawasaki KL5KUSB122 Controller is a unique single chip solution that serves as a bridge between USB and Ethernet interfaces. The USB side of the controller supports both USB Host and Device modes. The KL5KUSB122 has been specifically designed to provide Ethernet connectivity to USB devices. This has been accomplished by its highly integrated functionality. The USB controller consists of a central 16-bit processor, mask ROM, RAM buffer, clock generator, Ethernet interface, UART, IRQ, Watchdog Timer, Serial interface, External Memory Interface and SPORT Interface. The SIE (Serial Interface Engine) is fully compatible with the USB specification. This USB to Ethernet Mini Host controller is ideal for simple networking of peripherals such as home appliances, cameras, and phones.

Features

- Advanced 16 Bit processor for USB transaction processing and control data processing
- 10/100BaseT compatibility
- USB Host or USB Device interface ver. 1.0/1.1 compliant
- Transceivers and SIE (Serial Interface Engine)
- Internal Clock Generation Utilizes low cost external 12MHz crystal circuitry
- MII Physical Layer interface

- Remote NDIS for faster data transfer.
- Debug UART
- External memory interface
- 100 LQFP package
- Serial Interface for external EEPROM
- 1.5K x 16 Internal RAM buffer

Block Diagram

KL5KUSB122

USB Mini Host to 10/100 Ethernet

KL5KUSB122 Application Block Diagram

Pin Diagram 100LQFP

KL5KUSB122

USB Mini Host to 10/100 Ethernet

Pin Description

Pin # LQFP	I/O	Pin Name	Description				
1	IN	VDD	VDD				
2	GND	GND	PLL GND				
3	IN	VCO_IN	PLL VCO IN				
4	OUT	CP_OUT	PLL VCO OUT				
5	IN	PLLEN	PLL Enable				
6	IN	VDD	PLL VDD				
7	N/C	N/C	Open connection				
8	IN	PHRXD1	MII PHY Receive Data 1				
9	IN	PHRXD2	MII PHY Receive Data 2				
10	IN	PHRXD3	MII PHY Receive Data 3				
11	IN	PHRXER	MII Receive Data Error from PHY				
12	IN	PHRXDV	MII Receive Data Valid from PHY				
13	IN	GND	Ground				
14	OUT	PHTXD0	MII Transmit data to PHY				
15	IN	PHCOL	MII Collision input from PHY				
16	OUT	PHTXEN	MII Transmit Enable to PHY				
17	OUT	PHTXD1	MII Transmit Data 1 to PHY				
18	OUT	PHTXD2	MII Transmit Data 2 to PHY				
19	OUT	PHTXD3	MII Transmit Data 3 to PHY				
20	OUT	PHTXER	MII Transmit Error to PHY				
21	IN	GND	Ground				
22	IN/OUT	TXD	UART TXD				
23	IN	UGND	USB GND				
24	IN/OUT	VP	USB + Pin				
25	IN/OUT	VM	USB – Pin				
26	IN	UVDD	USB VDD				
27	NC	NC	Open connection				
28	NC		Open connection				
29	IN	PHIXCLK	MILPHY Transmit Clock				
30	IN	PHRXCLK	MILPHY Receive Clock				
31	IN	PHCRS	MILPHY Carrier Sense				
32		PH_RXD0	MII PHY Serial Receive Data, bit 0				
33							
34		RXD					
30		IRQU	Edge sens. Interrupt				
30			Edge sens. Interrupt				
37			Sport Mode of GPIO7				
38			Sport Mode of GPI08				
39							
40			Sorial POM Data				
41			Sorial POM Clock				
42			Dull up to LISE Din for High Speed				
43			Sport Mode or CRIOS				
44			Sport Mode or CDIOG				
40	IIN	DKA					

KL5KUSB122

USB Mini Host to 10/100 Ethernet

Pin # LQFP	I/O	Pin Name	Description				
46	IN	OGND	GND				
47	IN	CLK	12MHz Clock/Crystal Input				
48	OUT	X2	12MHz Crystal Output				
49	OUT	XA_15	External Address Pin				
50	IN	VDD	VDD				
51	IN	OVDD	VDD				
52	OUT	XA_14	External Address Pin				
53	OUT	XA_0	External Address Pin				
54	OUT	nXBHE	SRAM Byte High Enable				
55	IN	IGND	GND				
56	OUT	nXRAMSEL	SRAM Byte Low Enable				
57	OUT	LED_ON	Turns on 3.3V to TX LED / MII MDIO				
58	N/C	N/C	Open connection				
59	N/C	N/C	Open connection				
60	IN	VDD	VDD				
61	IN	GND	Ground				
62	IN/OUT	nPDN	Active low Powerdown mode signal to Phy				
63	IN	GND	GND				
64	OUT	nXRD	External Memory Read (Active low)				
65	OUT	nXWR	External Memory Write (Active low)				
66	N/C	nXROMSEL	External ROM CS, active LO				
67	IN	nRESET	Reset Pin				
68	IN	nTST	Test Pin, Disconnect for Normal Operation				
69	OUT	XA_1	External Address Pins				
70	OUT	XA_2	External Address Pins				
71	OUT	XA_3	External Address Pins				
72	OUT	XA_4	External Address Pins				
73	OUT	XA_5	External Address Pins				
74	OUT	XA_6	External Address Pins				
75	OUT	XA_7	External Address Pins				
76	OUT	XA_8	External Address Pins				
77	OUT	XA_9	External Address Pins				
78	OUT	XA_10	External Address Pins				
79	OUT	XA_11	External Address Pins				
80	OUT	XA_12	External Address Pins				
81		XA_13	External Address Pins				
82		XD_0	External Data Pins				
83		XD_1	External Data Pins				
84		XD_2	External Data Pins				
85		XD_3	External Data Pins				
86		XD_4	External Data Pins				
87		XD_5	External Data Pins				
88			External Data Pins				
89			External Data Pins				
90			External Data Pins				
91			External Data Pins				
92			External Data Pins				
93							
94			GNU Externel Data Dina				
95	IIN/OUT	XD_12	External Data Pins				

Pin # LQFP	I/O	Pin Name	Description
96	IN/OUT	XD_13	External Data Pins
97	IN	OGND	GND
98	IN/OUT	XD_14	External Data Pins
99	IN/OUT	XD_15	External Data Pins
100	IN	VDD	VDD

Function Description

16 Bit Processor

The integrated 16-bit processor serves as a micro controller for USB peripherals. The processor can execute approximately five million instructions per second. With this processing power it allows the design of intelligent peripherals that can process data prior to passing it on to the host PC, thus improving overall performance of the system. The masked ROM (8K X 16) in the KL5KUSB122 or external memory contains a specialized instruction set that has been designed for highly efficient coding of processing algorithms and USB transaction processing.

The 16-bit processor is designed for efficient data execution by having direct access to the RAM Buffer, external memory, I/O interfaces, and all the control and status registers. The divide/multiply feature expands the capability of USB peripherals.

The processor supports prioritized vectored hardware interrupts. Additionally, up to 240 software interrupt vectors are available.

The processor provides six addressing modes, supporting memory-to-memory, memoryto-register, register-to-register, immediate-to-register or immediate-to-memory operations. Register, direct, immediate, indirect, and indirect indexed addressing modes are supported. In addition, there is an auto-increment mode in which a register, used as an address pointer is automatically incremented after each use, making repetitive operations more efficient both from a programming and a performance standpoint.

The processor features a full set of program control, logical, and integer arithmetic instructions. All instructions are sixteen bits wide, although some instructions require operands, which may occupy another one or two words. Several special " short immediate" instructions are available, so that certain frequently used operations with small constant operand will fit into a 16-bit instruction.

RAM Buffer

The USB controller contains a 3K byte (1.5K X 16) internal buffer memory. The memory is used to buffer data and USB packets and accessed by the 16-bit processor and the SIE. USB transactions are automatically routed to the memory buffer. The 16-bit processor has the ability to set up pointers and block sizes in buffer memory for USB transactions. Data is read from the interface and is processed and packetized by the 16-bit I/O processor.

PLL Clock Generator

A 12 MHz external crystal may be used with the KL5KUSB122 Controller. Two pins, X1 and CLK, are provided to connect a lower cost crystal circuit to the device. PLL circuitry is provided to generate the internal 48MHz clock requirements of the device. If an external 12 MHz clock is available in the application, it may be used in lieu of the crystal circuit by connecting directly to the CLK input pin.

USB Interface

The KL5KUSB122 Controller has a built in transceiver that meets the Universal Serial Bus (USB) specification v 1.1. The transceiver is capable of transmitting and receiving serial data at the USB full speed, 12 Mbits/sec, data rate. The driver portion of the transceiver is differential, while the Receive section is comprised of a differential receiver and two single ended receivers. Internally, the transceiver interfaces to the SIE (Serial Interface Engine) logic. Externally, the transceiver connects to the physical layer of the USB. The USB controller may be optionally configured to behave as a USB host or as a USB device.

10Mb, 100Mb/sec Ethernet Interface

The KL5KUSB122 Controller has a built in the Ethernet MAC (Media Access Controller) that is fully compliant with the IEEE 802.3 Ethernet standard. The KL5KUSB122 connects externally to a 10BaseT and/or 100BaseT ENDEC PHY. The KL5KUSB122 Controller 16-bit processor has direct access to the registers of the MAC.

UART Interface

Supports a transfer rate of 7200 to 115.2K baud.

Serial EEPROM Support

The KL5KUSB122 Controller serial interface is used to provide access to external EEPROMs. The interface can support a variety of serial EEPROM formats.

SRAM Interface

A multiplexed address port and 16-bit data port has been provided to interface to an external SRAM. The external SRAM is used to buffer data between USB and Ethernet. The chip will support both 8-bit and 16-bit SRAM.

DC CHARACTERISTICS

U2E is implemented with Kawasaki's 0.5um CMOS CBA and Embedded Memory KZ300EM Technology. The followings are the description of chip electric characteristics.

1. Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vdd	-0.3 ~ 4.0	V
Input Voltage	Vin	-0.3 ~ 7.3	V
DC Output Current	lout	±15	mA
Storage Temperature	Tstg	-55 ~ 125	°C

2. Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Operating supply voltage	Vdd	3.0	-	3.6	V
Operating ambient temperature	Та	0	_	70	°C

Kawasaki LSI assumes no responsibility or liability for (1) any errors or inaccuracies contained in the information herein and (2) the use of the information or a portion thereof in any application, including any claim for (a) copyright or patent infringement or (b) direct, indirect, special or consequential damages. There are no warranties extended or granted by this document. The information herein is subject to change without notice form Kawasaki LSI

September 2001 • ©Copyright 2001 • Kawasaki LSI • Printed in U.S.A