SIEMENS

Features

- High sensitivity
- High operating temperature
- Low offset voltage
- Low TC of sensitivity and internal resistance
- Plastic miniature package SOT 143 for surface mounting (SMT)

Typical applications

- Digital speed sensors
- Digital position sensors
- Commutatorless DC motors

Dimensions in mm

Type	Marking	Ordering Code
KSY 13 (E 7502)	S 13	Q62705-K209 (taped on 18-cm reel)

The position sensor KSY 13 is an ion-implanted Hall generator made of mono-crystalline GaAs material. Enclosed in a miniature package (SOT 143), it is suitable for surface mounting (SMT).
If the sensor is operated with a constant supply current, the output Hall voltage is directly proportional to a magnetic field acting upon the sensor. This sensor is outstanding for its high magnetic field sensitivity and very low temperature coefficient.
The active area of the GaAs chip is approx. $0.2 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ and is placed approx. 0.3 mm below the plastic surface of the package. The chip carrier is softmagnetic.

Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature range	T_{A}	$-40 /+150$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-50 /+160$	${ }^{\circ} \mathrm{C}$
Supply current	I_{1}	7	mA
Thermal conductivity ${ }^{1)}$	$G_{\mathrm{th} \mathrm{A}}$	≥ 2.7	$\mathrm{~mW} / \mathrm{K}$

Characteristics ($T_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Nominal supply current	$I_{1 \mathrm{~N}}$	5	mA
Open-circuit Hall voltage $I_{1}=I_{1 \mathrm{~N}}, B=0.1 \mathrm{~T}$	V_{20}	$95 \ldots 145$	mV
Ohmic offset voltage			
$I_{1}=I_{1 \mathrm{~N}}, B=0 \mathrm{~T}$	$V_{\mathrm{R} 0}$	$\leq \pm 30$	mV
Supply and Hall side internal resistance $B=0 ~ \mathrm{~T}$	$R_{10,20}$	$900 \ldots 1200$	Ω
Temperature coefficient of the open-circuit Hall voltage $I_{1}=I_{1 \mathrm{~N}}, B=0.2 \mathrm{~T}$	$T C_{\mathrm{V} 20}$	approx. -0.05	$\% / \mathrm{K}$
Temperature coefficient of the internal resistance $B=0.2 \mathrm{~T}$	$T C_{\mathrm{R} 10, \mathrm{R} 20}$	approx. $+0.1 \ldots 0.18$	$\% / \mathrm{K}$

[^0]Open-circuit Hall voltage V_{20} versus temperature
referred to V_{20} at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Max. permissible supply current I_{1} versus temperature T_{A}

[^0]: 1) Thermal conductivity chip-ambient when mounted on alumina ceramic $15 \mathrm{~mm} \times 16.7 \mathrm{~mm} \times 0.7 \mathrm{~mm}$
 2) Selection upon request
