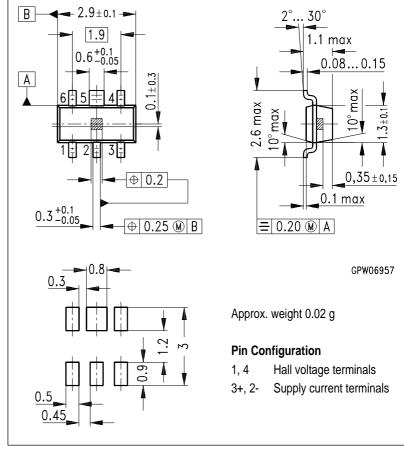
SIEMENS


Hall Sensor KSY 16

Features

- Hall sensor on Cu-leadframe for SMT-technology, MW-6 package
- High sensitivity
- High temperature range
- · Small linearity error
- Low offset voltage
- Low TC of sensitivity resistances
- This Hall sensor combines the avantages of nonmagnetic leadframe and SMT capability

Typical applications

- Rotation and position sensing
- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors

Dimensions in mm

Туре	Marking	Ordering Code
KSY 16	s16	on request

The KSY 16 is an ion-implanted Hall sensor in a monocrystalline GaAs-material, built into an SMT package (MW-6). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe. The active area is placed approx. 0.45 mm below the surface of the package.

Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature	T_{A}	- 40 + 150	°C
Storage temperature	T_{stg}	- 50 + 160	°C
Supply current	I_1	7	mA
Thermal conductivity ¹⁾	G_{thC}	≥ 2.2	mW/K

Characteristics ($T_{\rm A}$ = 25 °C)

I_{1N}	5	mA
K_{B0}	190260	V/AT
V_{20}	95130	mV
V_{R20}	≤±20	mV
$egin{array}{c} F_{L} \ F_{L} \end{array}$	≤ ± 0.2 ≤ ± 0.7	% %
R ₁₀	9001200	Ω
R ₂₀	9001200	Ω
TC_{V20}	~ - 0.03 0.07	%/K
<i>TC</i> _{R10, R20}	~ 0.10.18	%/K
$ \Delta V_{R0} $	≤ 2	mV
	$K_{ m B0}$ $V_{ m 20}$ $V_{ m R20}$ $F_{ m L}$ $F_{ m L}$ $R_{ m 10}$ $R_{ m 20}$ $TC_{ m V20}$	K_{B0} 190260 V_{20} 95130 V_{R20} $\leq \pm 20$ F_{L} $\leq \pm 0.2$ F_{L} $\leq \pm 0.7$ R_{10} 9001200 R_{20} 9001200 TC_{V20} $\sim -0.030.07$

Connection of a Hall sensor with a power source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source. This is to avoid damage to the Hall sensor due to power peaks.

¹⁾ Thermal conductivity chip-ambient when mounted on alumina ceramic 15 mm \times 17 mm \times 0.7 mm

²⁾ AQL: 0.65