L11810 Preliminary CMOS IC

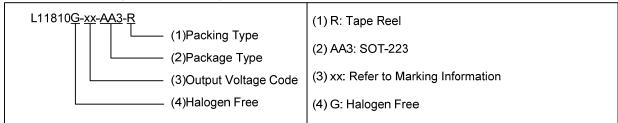
1A CMOS LOW DROPOUT VOLTAGE

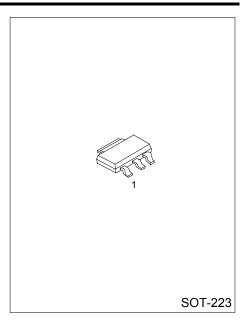
■ DESCRIPTION

As UTC LDO, the features of the UTC **L11810** include low quiescent current and very low dropout voltage.

In order to prevent from the bad operating conditions, there are internal thermal shutdown and current fold-back. For stably operation, the UTC **L11810** should be connected to an output capacitance of $2.2\mu F$ or larger.

The UTC **L11810** is ideal for battery applications, such as portable electronics, wireless devices, cordless phones, PC peripherals and battery powered widgets.

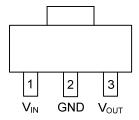

■ FEATURES


- * Extra low dropout voltage
- * Output current: 1A (guaranteed)
- * Output voltage accuracy: ±1.5%
- * Quiescent current: 30µA
- * Internal Over-Temperature shutdown
- * With Current limiting
- * Internal short circuit current fold-back
- * Pre-set output voltages in factory
- * Very low temperature coefficient
- * Halogen Free

ORDERING INFORMATION

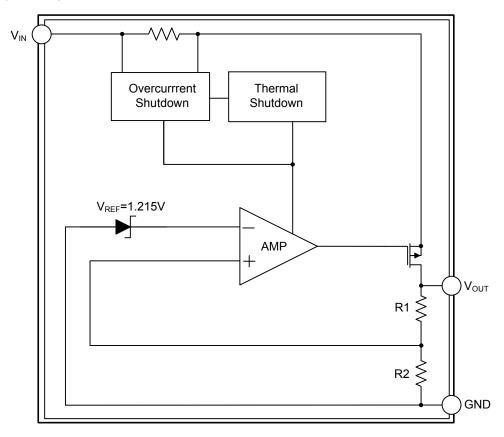
Ordering Number	Package	Pin Assignment			Packing		
L11810G-xx-AA3-A-R	SOT-223	I	G	0	Tape Reel		

Note: Pin Assignment: G:GND O: V_{OUT} I: V_{IN} xx: Output Voltage, refer to Marking Information.



MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-223	28 :2.8V	Pin Code Voltage Code 1 2 3 Date Code


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION
1	V_{IN}	Input voltage pin which should be decoupled with 1µF or greater capacitor.
2	GND	Ground.
3	V _{OUT}	Output voltage pin which should be decoupled with a ceramic capacitor (value: 2.2µF or larger and low ESR).

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

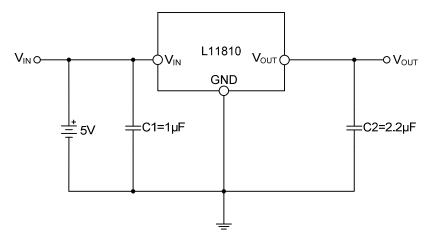
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	8	V
Input ,Output Voltage		GND - 0.3 ~ V _{IN} + 0.3	V
Output Current	I _{OUT}	1.2	Α
Power Dissipation	P _D	900	mW
Junction Temperature	TJ	125	°C
Operating Temperature	T _{OPR}	- 40 ~ +85	°C
Storage Temperature	T _{STG}	- 65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	120	°C/W
Junction to Case (Note)	θ_{JC}	25	°C/W

Note: Measure θ_{JC} on backside center of tab


■ **ELECTRICAL CHARACTERISTICS** (Ta = 25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS			TYP	MAX	UNIT
Input Voltage	V _{IN}			Note1		7	V
Output Voltage Accuracy	V _{OUT}	I _{OUT} =1mA				1.5	%
Line Regulation	<u>ΔVout</u> Vout	I _{OUT} =1mA,	1.8V≤V _{OUT} ≤2.0V	-0.15		0.15	%
		V _{IN} =V _{OUT} +1~V _{OUT} +2	2.0V <v<sub>OUT<4.0V</v<sub>	-0.1	0.02	0.1	%
	V 001		V _{OUT} ≥4.0V	-0.4	0.2	0.4	%
Load Regulation	$\frac{\Delta V_{OUT}}{V_{OUT}}$	I _{OUT} =1mA~1000mA			0.4	1.2	%
Output Current	l _{оит}	V _{OUT} ≥1.8V					mA
Current Limit	I _{LIMIT}	V _{OUT} ≥1.8V					mA
Short Circuit Current	I _{SC}	V _{OUT} <0.8V			400	800	mA
Quiescent Current	I_{Q}	I _{OUT} =0mA			30	50	μA
Ground Pin Current	I_{GND}	I _{OUT} =1mA~1000mA			35		μA
	V _D	I _{OUT} =1A	1.8V≤V _{OUT(NOM} ≤2.0V			1700	mV
Dropout Voltage		Vout=Vout/Now -2 0%	2.0V <v<sub>OUT(NOM≤2.8V</v<sub>			1200	mV
		**************************************	2.8V <v<sub>OUT(NOM)</v<sub>			1000	mV
Over Temperature Shutdown	OTS				150		°C
Over Temperature Hysteresis	OTH				30		°C
Temperature Coefficient of Output Voltage	$T_{C}V_{O}$				30		ppm/°C
Davier Cumply Dinnle	Ripple PSRR	1 -400ma	f=100Hz		60		dB
Power Supply Ripple Rejection		I_{OUT} =100mA C_0 =2.2 μ F	f=1kHz		50		dB
Trejection		O ₀ −2.2μΓ	f=10kHz		20		dB
Output Voltage Noise	eN	I _{OUT} =10mA, C _{OUT} =2.2μF, f=10Hz~100kHz			30		μVrms

 $Notes: 1. V_{IN(MIN)} = V_{OUT} + V_{D}$

^{2.} To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

■ TYPICAL APPLICATION CIRCUIT

■ APPLICATION INFORMATION

1. Detailed Description

Internal circuits include: a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

The data through the error amplifier, over-current shutdown, and thermal protection circuits, then to the P-channel pass transistor.

As soon as the junction temperature exceeds 150°C or the current exceeds 1100mA, over-current and thermal shutdown circuits start working. When the junction temperature drops below 120°C, normal operation is restored.

When the load exceeds the rated output current, for preventing the over stress, the chip switches from voltage mode to current mode.

2. External Information

When considering the external capacitors, the L11810 is stable with an output capacitor to ground of $2.2\mu F$ or greater. As we know, the ceramic capacitors have the lowest ESR but can offer the best AC performance; the aluminum electrolytic capacitors exhibit the highest ESR but offer the poorest AC response. And also large value ceramic capacitors are expensive. Consider all the situation, the best way is to parallel a $0.1\mu F$ ceramic capacitor with a $10\mu F$ Aluminum Electrolytic (low ESR, high capacitance, and low overall cost).

For better beneficial effecting, the input capacitor should be at least $0.1 \mu F$.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

