

LA2650

Bass Boost IC

Overview

The LA2650 is a bass boost IC developed for use in minicomponent stereo systems, TV sets, and radio/cassette player products. The cutoff frequency is determined by external capacitors, and the boost gain, addition level, and boost on/off state can be controlled by a microcontroller.

Features

- The bass boost gain is variable over a maximum range of 20 to 35 dB in 5-dB steps, and the addition level into the left and right channels can be controlled over a 0 to -35 dB range in 3-dB and 5-dB steps. This allows an optimal boost for the source and volume to be acquired using microprocessor control.
- Includes two AGC circuits on chip: a level limiter (2 V rms) for the maximum input in low-frequency boost mode and a non-clipping limiter (i.e. clip prevention) circuit.
- Can be switched between 2D and 3D systems.

Functions

- Variable boost gain (20, 25, 30, and 35 dB)
- Boost level limiter, non-clipping limiter
- Variable boost addition level (0, -3, -6, -9, -15, -20, -25, and -35 dB)

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		12	V
Allowable power dissipation	Pd max	Ta ≤ 70°C	450	mW
Operating temperature	Topr		-25 to +70	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		9	V
Operating voltage range	V _{CC} op		5 to 10	V

Control Data Input Voltage Levels

Parameter	Symbol	Conditions	Ratings	Unit
Low-level voltage	VIL		0 to 1.5	V
High-level voltage	V _{IH}		3.5 to *5.5	V

Note: When V_{CC} is under 5.7 V, the maximum value shall be V_{CC} – 0.2 V.

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

- Left and right channel boost addition on/off
- Bass output pin for use in 3D systems
- Boost on/off
- LED on/off
- 8-bit serial microprocessor interface

Package Dimension

unit: mm

3021B-DIP20

Electrical Characteristics at Ta = 25°C, V_{CC} = 9 V, f_i = 1 kHz, R_L = 10 k Ω , BST = 35 dB, ADD = 0 dB, BST:ADD = ON

Deservator	Quarkal			Ratings		11-14
Parameter	Symbol	Conditions	min	typ	max	
	I _{CCO} T	Boost: off	5	8	13	mA
Quiescent current	I _{CCO} B	Boost: on	6	9	14	mA
	VGT	V _{IN} = 0 dBm, Boost: off	-2	0	+2	dB
Voltage gain	VGB	V _{IN} = 0 dBm, Boost: on	-2	0	+2	dB
	BST1	Boost: on, $f_i = 50$ Hz, BST = 35 dB, ADD = 0 dB, $V_{IN} = -30$ dBm	25.5	28.5	31.5	dB
Depet lovel, high	BST2	Boost: on, $f_i = 50$ Hz, BST = 35 dB, ADD = 0 dB, $V_{IN} = -20$ dBm	21	24	27	dB
Boost level. high	BST3	Boost: on, $f_i = 50$ Hz, BST = 35 dB, ADD = 0 dB, $V_{IN} = -10$ dBm	13	15	17	dB
	BST4	Boost: on, $f_i = 50$ Hz, BST = 35 dB, ADD = 0 dB, $V_{IN} = 0$ dBm	5	7	9	dB
	BST1	Boost: on, $f_i = 50$ Hz, BST = 30 dB, ADD = -6 dB, $V_{IN} = -20$ dBm	15	18	21	dB
Boost level: low	BST2	Boost: on, $f_i = 50$ Hz, BST = 30 dB, ADD = -6 dB, $V_{IN} = -10$ dBm	8	10	12	dB
	BST3	Boost: on, $f_i = 50$ Hz, BST = 30 dB, ADD = -6 dB, $V_{IN} = 0$ dBm	1.5	3.5	5.5	dB
	V _O maxT	THD = 1%, Boost: off	2.00	2.55		V
Maximum output voitage	V _O maxB	THD = 1%, Boost: on	2.00	2.55		V
	THD T	V _{IN} = -10 dBm, Boost: off, BPF = 400 Hz to 30 kHz		0.008	0.03	%
I otal harmonic distortion	THD B	$V_{IN} = -10 \text{ dBm}$, Boost: on, $f_i = 50 \text{ Hz}$, LPF = 30 kHz		0.3	0.9	%
	СТ Т	$V_O = 0 \text{ dB}, \text{Rg} = 10 \text{ k}\Omega, \text{DIN AUDIO},$ Boost: off	80	88		dB
Crosstaik	СТ В	$V_O = 0 \text{ dB}, \text{Rg} = 10 \text{ k}\Omega, \text{DIN AUDIO},$ Boost: on	50	59		dB
Output noise voltage	V _{NO} T	$Rg = 10 k\Omega$, JIS A, Boost: off, Boost ADD = off		-97	-90	dBm
	V _{NO} B	Rg = 10 k Ω , JIS A, Boost: on		-91	-84	dBm
LED current	I _{LED}	RED LED	11	15	19	mA

Parameter	Conditions	D1	D2	D3	D4	D5	D6	D7	D8
Quiescent current									
I _{CCO} T	I _{CCO} T Boost: on		L	L	L	L	L	L	L
I _{CCO} B	Boost: off	н	н	н	Н	н	н	L	н
Voltage gain	V _{IN} = 0 dBm								
VG T	Boost: off	L	L	L	L	L	L	L	L
VG B	Boost: on	н	н	н	н	н	н	L	н
Boost level: high	Boost: on, $f_i = 50 \text{ Hz}$, BST = 35 dB, ADD = 0 dB	н	н	н	н	н	н	L	н
Boost level: low	Boost: on, $f_i = 50 \text{ Hz}$, BST = 30 dB, ADD = -6 dB	н	L	н	L	н	н	L	н
Maximum output voltage	THD = 1%								
V _O maxT	Boost: off	L	L	L	L	L	L	L	L
V _O maxB	Boost: on	н	н	н	н	н	н	L	н
Total harmonic distortion	$V_{IN} = -10 \text{ dBm}$								
THD T	Boost: off, BPF = 400 Hz to 30 kHz	L	L	L	L	L	L	L	L
THD B	Boost: on, $f_i = 50$ Hz, LPF = 30 kHz	н	н	н	Н	н	н	L	н
Crosstalk	$V_{O} = 0 \text{ dBm}, \text{Rg} = 10 \text{ k}\Omega, \text{DIN AUDIO}$								
СТ Т	Boost: off	L	L	L	L	L	L	L	L
CT B	Boost: on	н	н	н	н	н	н	L	н
Output noise voltage	Rg = 10 kΩ, JIS A								
V _{NO} T	Boost: off, Boost ADD = off	L	L	L	L	L	L	L	L
V _{NO} B	Boost: on	Н	н	н	Н	Н	Н	L	н
LED current									
I _{LED}	RED LED	*	*	*	*	*	*	Н	*

Control Data for the Parameters in the Electrical Characteristics

*=don't care

Block Diagram

Test Circuit

Sample Application Circuit

Notes on LA2650 Operation

LPF cutoff frequency Use the following formula to calculate the cutoff frequency: $\cdot fc = 1/(2\pi CR) Hz$ However: $R = 50 k\Omega$, since the resistor is on chip. Thus the cutoff frequency can be set by the external capacitor. Example: $C = 0.039 \mu F$ (As in the sample application circuit) fc = 81.6 HzMaximum boost gain Use the following formula to calculate the maximum boost gain. $\cdot BASS OUT$ total gain (G_B) = $\alpha + 4 \times 20 \log_{10} (1 + 4\pi^2 f^2 C^2 R^2)^{-1/2} + \beta$ Here, $\alpha = Boost gain (20, 25, 30, or 35 dB)$ $\beta = Addition level (0, -3, -6, -9, -15, -20, -25, or -35 dB)$ f: Frequency

C: The LPF external capacitor

 $R = 50 k\Omega$ (built in)

Example: When $\alpha = 35$ dB, $\beta = 0$ dB, f = 50 Hz, C = 0.039 μ F (As in the application circuit) G_B = 29.46 dB

Pin Functions

Pin No.	Pin	Pin voltage (V)	Pin function	Equivalent circuit
1 20	IN-L IN-R	1/2 V _{CC}	Signal input pin The input impedance is 50 kΩ	$\begin{array}{c} V_{CC} & V_{CC} \\ \hline \\ 1 \\ \hline \\ 50 k \Omega \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
2	BOOST ON/OFF SMOOTHING	0.7 to 2	Smoothing pin for boost on/off switching	2 - 270KΩ - 777 - 777 - 777 - 777 - 777 - 777 - 777 - 777
3 4 5	ENABLE DATA CLOCK	Apply either 0 or 5 V.	Serial control data input pins	
7	DET-OUT	1.7 to 3.5	The detection attack and recovery times are set by the external resistor and capacitor connected to this pin.	Vcc vcc vcc vcc 7 500Ω - - - 7 500Ω - - - - 7 500Ω + - - - - -
8	LED	V _{CC} max.	LED cathode Influx current: 20 mA (maximum)	

Continued from preceding page.

Pin No.	Pin	Pin voltage (V)	Pin function	Equivalent circuit
9	BASS-OUT	1/2 V _{CC}	Low boost output for 3D systems	$\begin{array}{c} \begin{array}{c} V_{CC} & V_{CC} \\ \hline \\ 9 \\ \hline \\ 100\Omega \\ \hline \\ 777 \\ 7$
10 11	OUT-R OUT-L	1/2 V _{CC}	Signal outputs	$\begin{array}{c} v_{CC} & v_{CC} \\ 10 \\ 11 \\ 100\Omega \\ 10 \\ 10$
12 13 19	LPF4 LPF3 LPF1	1/2 V _{CC}	LPF connection for the low-boost circuit Internal resistor: 50 kΩ	$\begin{array}{c} V_{CC} & V_{CC} \\ (12) & & 1k\Omega \\ (13) & & 50k\Omega \\ (19) & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$
15	VCA NF	1/2 V _{CC}	VCA feedback	$15 + 100k\Omega + 1k\Omega + 1k\Omega + 100k\Omega + 100$
16	LPF2	1/2 V _{CC}	LPF connection for the low-boost circuit Internal resistor: 50 kΩ	V_{CC} V_{CC} V_{CC} 16 16 16 17 17 777 777 777 777 777
17	DC-CUT	1/2 V _{CC}	Connection for DC-cut capacitor	
18	V _{REF} IN	1/2 V _{CC}	V _{REF} amplifier reference	

Note: Pin voltage values are typical values.

External Components

 C₁, C₁₅ (0.22 to 10 μF) Input coupling capacitor. Note that the low-frequency gain is reduced at lower capacitances. The value of these capacitors determines the extreme low-frequency cutoff.

• C_2 (0.22 to 2.2 μ F)

Boost on/of switching circuit smoothing capacitor.

The on/off switching time can be adjusted by changing the value of this capacitor. However, note that if the value is lowered excessively, switching noise (spikes) may appear.

• C_3 (10 to 220 μ F) Detection capacitor. The attack and recover times can be adjusted by changing the value of this capacitor.

- C₄, C₅, C₆ (0.22 to 10 μF) Output coupling capacitors.
- C₇, C₈, C₁₁, C₁₄

Low boost LPF capacitors.

The low boost curve can be adjusted by changing the values of these capacitors. These capacitors may be omitted or, inversely, secondary or tertiary structures may be used.

- C₉ (22 to 220 μF) Power supply capacitor.
- C_{10} (1.0 to 22 μ F)
- VCA NF capacitor.

Note that lowering the value of this capacitor will lower the low-frequency boost. This capacitor determines the extreme low-frequency cutoff.

- C₁₂ (1.0 to 22 µF)
- DC cut capacitor

Note that lowering the value of this capacitor will lower the low-frequency boost. This capacitor determines the extreme low-frequency cutoff.

• C_{13} (1.0 to 22 μ F) RF reference LPF capacitor. The RF SVRR can be modified by changing the value of this capacitor.

R₁ (200 kΩ to 3.9 MΩ)
Detection recovery time adjustment (discharge resistor)
Note that the total harmonic distortion is increased as the value of this resistor is reduced.

• R_2 (0 to 1 k Ω) LED current adjustment. LED current $\approx (V_{CC} - V_{LED} - 0.9)/(R_2 + 300)$ The maximum LED current is 20 mA.

Control Format

Add Level Select

D1, D2, D3	Add level	Notes
H, H, H	0 dB	
H, H, L	-3 dB	
H, L, H	-6 dB	
H, L, L	-9 dB	
L, H, H	–15 dB	
L, H, L	–20 dB	
L, L, H	–25 dB	
L, L, L	–35 dB	Initial setting for the V_{CC} on time

Boost Gain Select

D4, D5	Boost gain	Notes
H, H	35 dB	
H, L	30 dB	
L, H	25 dB	
L, L	20 dB	Initial setting for the V_{CC} on time

Left and right channel boost add on/off

	L	Н
D6	off	on

LED on/off

	L	Н
D7	off	on

Boost on/off

	L	н
D8	off	on

Note: The $V_{\mbox{\scriptsize CC}}$ on time and all other data is initialized to low.

Mode Switching

• Add level select

- Selects the addition level at the output mixing amplifier for the low-frequency signals from the boost amplifier.

- · Boost gain select
 - Selects the amplification applied to low-frequency signals by the boost amplifier.
- · Left and right channel boost add on/off
 - Turns addition of the low-frequency boosted signal to the left and right channels on or off.
- LED on/off
 - Turns the LED on or off.
- Boost on/off
 - Turns the amplification of low-frequency signals on or off.

Recommended Data Transfer Procedure

The boost gain select and the left and right channel boost add on/off settings should only be set at power on. During normal operation, control the device by setting the add level select and boost on/off settings. Using the add level select and boost on/off settings for control is superior from the standpoint of minimizing switching noise (spikes).

Limiter (ALC) Operation

- The level limiter operates when the boost gain amplifier output level reaches about 2 V rms, and suppress further level increases above that point.
- The non-clipping limiter operates to prevent boost gain amplifier output clipping at power-supply voltages (about 8.5 V and lower) at which the output cannot be amplified to the operating level of the level limiter.
- Notes on Control Data

- Data is read in on the rising edge of the clock signal.
- Data consists of 8 bits, D1 through D8.
- The input data is latched on the rising edge of the enable signal.
- When the LA2650 is not being controlled, the clock and the enable signal must be held high.
- Intervals between commands

The timing of the intervals on the enable signal must meet the conditions shown in the figure below.

- · Initial Settings at Power on
 - All data is reset to low when power is first applied.
 - Applications should send their initial data settings once the IC is fully operational after power is applied, i.e. about 0.5 second after power is applied.
- Data Timing

	min	typ	max	unit
t _{ec}	5			μs
t _{dc}	5			μs
t _{ch}	5			μs
t _{cl}	5			μs
t _{ce}	5			μs
t _{ck}	10			μs
	t _{ec} t _{dc} t _{ch} t _{cl} t _{ce} t _{ck}	min t _{ec} 5 t _{dc} 5 t _{ch} 5 t _{cl} 5 t _{ce} 5 t _{ce} 5 t _{ck} 10	min typ t _{ec} 5 t _{dc} 5 t _{ch} 5 t _{cl} 5 t _{ce} 5 t _{ce} 5 t _{ce} 10	min typ max t _{ec} 5 t _{dc} 5 t _{ch} 5 t _{ce} 5 t _{ck} 10

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1997. Specifications and information herein are subject to change without notice.