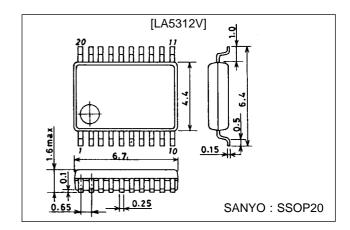


Variable Divided Voltage Generator for LCDs

Overview

The LA5312V is a variable divided voltage generator IC for multiple drive of LCD matrix.


Features

- Power supply for variable bias LCD drive (1/5 to 1/19 bias available by internal resistors)
- Four voltage outputs generated by four operational amplifiers.
- Low current drain (0.18 mA typ.)
- · Miniflat package for miniaturization.

Package Dimensions

unit: mm

3179-SSOP20

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

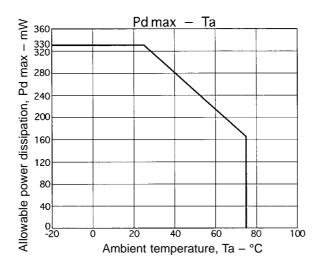
Parameter	Symbol Conditions		Ratings	Unit	
Maximum supply voltage	V _{EE} max	V _{CC} - V _{EE}	36	V	
Maximum output current	I _{OUT} max	V1 – V4	*Internal	mA	
Allowable power dissipation	Pd max		330	mW	
Operating temperature	Topr		-20 to +75	°C	
Storage temperature	Tstg		-30 to +125	°C	

Note 1: Continuous operation (without damage) is guaranteed in the above ranges.

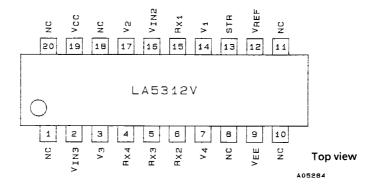
Note 2: *The maximum output current is the value stipulated under the test conditions on page 4.

Note 3: Output pins V1 to V4-to-V $_{CC}$ or GND short not exceeding 1 ms is acceptable. ($|V_{CC}-V_{EE}|<35~V$)

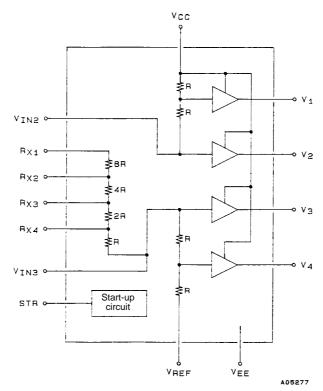
Operating Conditions at $Ta = 25^{\circ}C$


Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{EE}	V _{CC} - V _{EE}	−35.5 to −6	V
Input voltage	V _{REF}	$V_{REF} \ge V_{EE} : V_{CC} - V_{REF}$	−35 to −6	V
Output current	I _{OUT} 1,2	V1, V2	-0.5 to +5	mA
	I _{OUT} 3,4	V3, V4	-10 to +5	mA

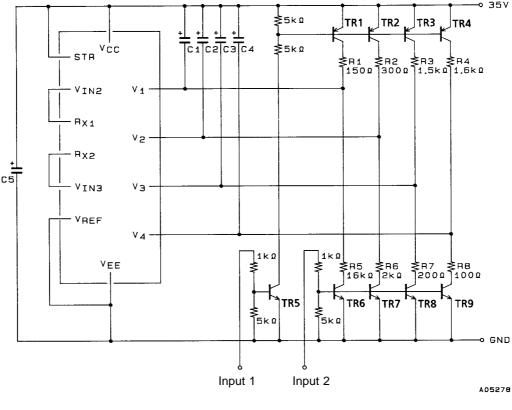
Note 4: Set V_{CC} and V_{EE} so that |V1| and $|V_{EE}-V4|$ are 1 V or more.


LA5312V

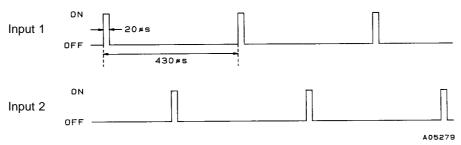
Operating Characteristics at $Ta=25^{\circ}C,\,V_{CC}-V_{EE}=20$ V, V_{REF} = $V_{EE},\,R_{X}$ = 8 R


Parameter	Symbol	Conditions	min	typ	max	Unit
Current drain	I _{CC} , I _{EE}	STR = 5 V : V _{CC} , V _{EE}		0.18	0.3	mA
Input current	I _{STR}	STR = 5 V : STR		9	12	μΑ
Output voltage ratio	Ra1	V2 / V1	1.96	2.00	2.04	_
	Ra2	(V _{REF} – V3) / (V _{REF} – V4)	1.96	2.00	2.04	_
	Rb1	V _{REF} / V1	11.64	12.00	12.36	_
	Rb2	V _{REF} / V2	5.82	6.00	6.18	_
	Rb3	V _{REF} / (V _{REF} – V3)	5.82	6.00	6.18	_
	Rb4	V _{REF} / (V _{REF} – V4)	11.64	12.00	12.36	_
Internal resistance ratio	R _X 1	Referenced to R across : R _X 1 - R _X 2		8		_
	R _X 2	• Pv1 = Pv2		12		_
	R _X 3	$R_{X}4$ and $V_{IN}3$: $R_{X}1 - R_{X}4$: $R_{X}1 - V_{IN}3$		14		_
	R _X 4			15		_
Resistance value	R	R value when voltage is applied across R_X4 and $V_{IN}3$ is 0.5 V : $R_X4 - V_{IN}3$		30		kΩ
Load regulation	△V1	+0.1 mA < I _{OUT} 1 < +5 mA : V1			±20	mV
	∆V2	+0.1 mA < I _{OUT} 2 < +5 mA : V2			±20	mV
	∆V3	+0.1 mA < I _{OUT} 3 < +5 mA : V3			±20	mV
	∆V4	+0.1 mA < I _{OUT} 4 < +5 mA : V4			±20	mV
	–∆V1	-0.5 mA < I _{OUT} 1 < -0.1 mA : V1			±20	mV
	-∆V2	-0.5 mA < I _{OUT} 2 < -0.1 mA : V2			±20	mV
	–∆V3	-10 mA < I _{OUT} 3 < -0.1 mA : V3			±20	mV
	-∆V4	-10 mA < I_{OUT} 4 < -0.1 mA : V4 (Source I_{OUT} is negative and sink I_{OUT} is positive).			±20	mV

Pin Assignment



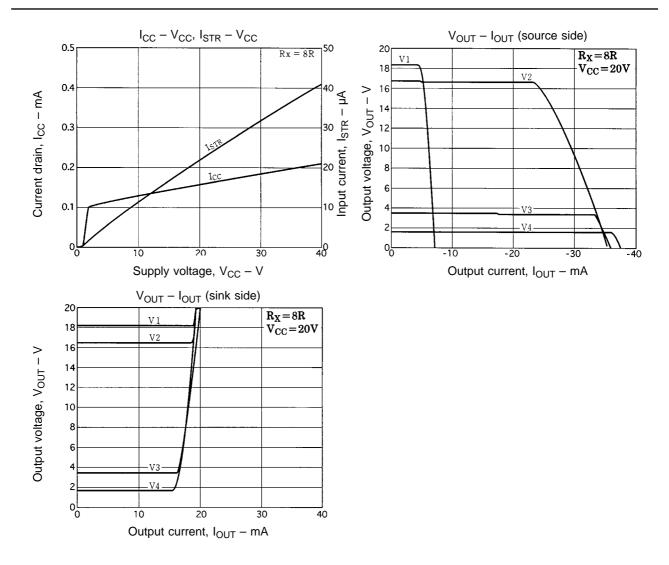
Block Diagram



(The voltages $V_{RX}1$, $V_{RX}2$, $V_{RX}3$, and $V_{RX}4$ must obey the relationship $V_{RX}1 \geqq V_{RX}2 \geqq V_{RX}3 \geqq V_{RX}4$).

Maximum Output Current Load Test Conditions

The output load resistor values (R1 to R8) are set so that when an "on" level signal is input to inputs 1 and 2, a current of 15 to 30 mA max. flows to the sink side and the source side (approximately 2 mA on the V1 source side).


STR Pin Usage

• The STR is either shorted with V_{CC} or connected to V_{CC} via an external resistor.
• It is possible to use a separate power supply (V_{IN}) such that 2 V < V_{IN} < V_{CC} for current saving.

1 V_{CC} V_{IN} < V_{CC} for current saving.

2 V_{IN} < V_{IN} < V_{CC} for current saving.

The STR input is configured as shown left.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.