

Current Transducer LA 55-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			50		
I _P	Primary current, measuring range			0 ± 70		
$\dot{R}_{_{\mathrm{M}}}$	Measuring resistance @		$T_{A} =$	70°C	$T_{A} = 85^{\circ}C$	
			\mathbf{R}_{Mmin}^{N}	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	R _{M min} R _{M max}	
	with ± 12 V	$@ \pm 50 A_{max}$	10	100	60 95	Ω
		$@ \pm 70 A_{max}$	10	50	60 ¹⁾ 60 ¹⁾	Ω
	with ± 15 V	@ ± 50 A _{max}	50	160	135 155	Ω
		$@ \pm 70 A_{max}$	50	90	135 ²⁾ 135 ²	Ω
I _{SN}	Secondary nominal r.m.s. current			50		mΑ
I _{sn} K _n	Conversion ratio			1:	1000	
V _c	Supply voltage (± 5 %)			± 1	2 15	V
I _C	Current consumption		10	(@ ±15 V)+ I s	mΑ	
V _d	R.m.s. voltage for AC iso	lation test, 50 Hz, 1	mn	2.5		kV

Accuracy - Dynamic performance data

X	Accuracy $@ I_{PN}$, $I_A = 25^{\circ}C$	@ ± 15 V (± 5 %)	± 0.65		%
		@ ± 12 15 V (± 5 %)	± 0.90		%
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.15		%
			Тур	Max ± 0.2	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.2	mΑ
I _{OM}	Residual current 3 @ $I_p = 0$, after an overload of 3 x I_{pN}			± 0.3	mΑ
I _{OT}	Thermal drift of I _o	0°C + 70°C	± 0.1	± 0.5	mΑ
		- 25°C + 85°C	± 0.1	± 0.6	mΑ
t _{ra}	Reaction time @ 10 % of I _{P n}	nax	< 500		ns
t,	Response time @ 90 % of I	P max	< 1		μs
di/dt	di/dt accurately followed		> 200		A/µs
f	Frequency bandwidth (- 1 dE	3)	DC 2	200	kHz


General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	80	Ω
		$T_A = 85^{\circ}C$	85	Ω
m	Mass		18	g
	Standards 4)		EN 50178	

Notes : 1) Measuring range limited to ± 60 A max

- ²⁾ Measuring range limited to ± 55 A _{max}
- 3) Result of the coercive field of the magnetic circuit
- 4) A list of corresponding tests is available

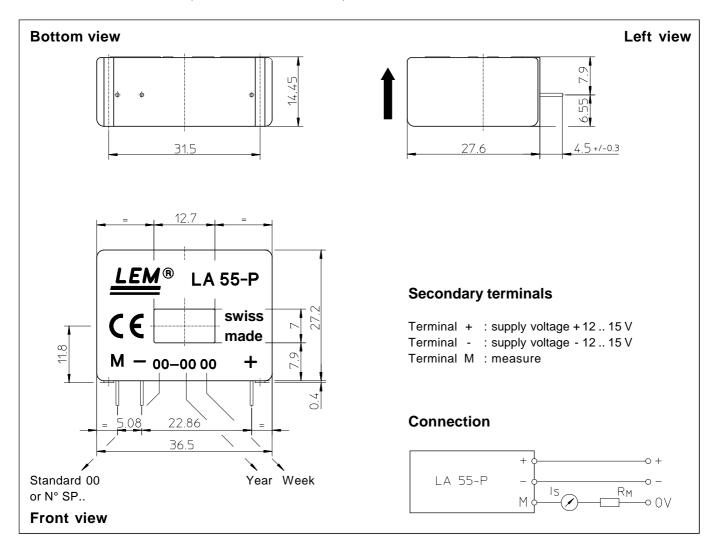
 $I_{PN} = 50 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980706/8

Dimensions LA 55-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.