

Overview

The LA71525M is a video/audio signal processor IC for VHS VCRs. It handles recording and playback of PAL/GBI, MESECAM, and 4.43 NTSC signals.
NTSC software tapes can be converted to PAL for monitoring, and the IC realizes high picture and sound quality. The IC requires no adjustments and minimizes the peripheral component count, making it possible to implement efficient signal handling at low cost.

Specifications

Package Dimensions

unit: mm
3174-QFP80E

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {CC }}$ max $V_{C C} \max$	$\begin{aligned} & \text { pin } 36,41,47 \\ & \operatorname{pin} 76 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 65^{\circ} \mathrm{C}$ $114.3 \times 76.1 \times 1.6 \mathrm{~mm}^{3}$ with paper phenol substrate	1400	mW
Operating temperature	Topr		-10 to +65	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +150	${ }^{\circ} \mathrm{C}$

Operating Conditions at $\mathbf{T a}=\mathbf{2 5} \mathbf{}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	$\mathrm{V}_{\mathrm{CC}} 1$	$\operatorname{pin} 36,41,47$	5.0	V
	$\mathrm{~V}_{\mathrm{CC}}{ }^{2}$	$\operatorname{pin} 76$	6.8	V
	$\left(\mathrm{~V}_{\mathrm{CC}} 2\right)$	$(\operatorname{pin} 76)$	(7.5)	V
Recommended operating supply	$\mathrm{V}_{\mathrm{CC}} 1 \mathrm{opg}$		4.8 to 5.5	V
voltage range	$\mathrm{V}_{\mathrm{CC}}{ }^{2}$ opg		6.4 to 7.9	V

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Operating Characteristics at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbf{C C}}=5 \mathrm{~V}$

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
[REC mode Y]								
Current drain (POWER SAVE MODE)	Iccs			Influx current measured at pin 41 in power save mode	20	22	24	mA
Current drain (REC)	${ }^{\text {CCR }}$			Sum of influx current at pins 36, 41, 47, 76 measured; 5V: pins $36,41,47 ; 7 \mathrm{~V}$: pin 76	130	145	160	mA
EE output level 1	$\mathrm{V}_{\mathrm{EE}}{ }^{1}$	T28A	T38	T38 output level measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}-\mathrm{p}$ video signal (PAL)	2.0	2.1	2.2	Vp-p
EE output level 2	$\mathrm{V}_{\mathrm{EE}}{ }^{2}$	T28A	T38	T38 output level measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}$-p video signal (NTSC)	2.0	2.1	2.2	Vp-p
AGC characteristics 1	AGC1	T28A	T38	Ratio of V_{EE} and T 38 output level with $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{Vp}$-p video signal	0	0.6	1.2	dB
AGC characteristics 2	AGC2	T28A	T38	Ratio of V_{EE} and T38 output level with $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{Vp}$-p video signal	-1.2	-0.2	0	dB
AGC characteristics 3	AGC3	T28A	T38	T38 SYNC level measured with $\mathrm{V}_{\mathrm{IN}}=700 \mathrm{mVp}$-pLUMI, 600 mVp -p SYNC	550	650	750	mVp-p
AGC characteristics 4	AGC4	T28A	T38	T38 SYNC level measured with $\mathrm{V}_{\mathrm{IN}}=700 \mathrm{mVp}$-pLUMI, 150 mVp -p SYNC	370	420	470	mVp-p
Sync separation output level	$\mathrm{V}_{\text {SYR }}$	T28A	T37	T37 output pulse crest value measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}$-p video signal	4.0	4.2	4.4	Vp-p
Sync separation output pulse width	PW ${ }_{\text {SYR }}$	T28A	T37	T37 output pulse width measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}$-p video signal	4.2	4.5	4.8	$\mu \mathrm{s}$
Sync separation output Pre-delay time	$\Delta \mathrm{T}_{\text {SYR }}$	T28A	T37	Delay of output SYNC vs. input SYNC measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}$-p video signal	0.6	0.8	1.0	$\mu \mathrm{s}$
Sync separation output Threshold level	TH ${ }_{\text {SYR }}$	T28A	T37	Input level gradually attenuated and measured when output pulse width becomes larger than PW SYR by $1 \mu \mathrm{~s}$		-20	-15	dB
Sync tip level Pedestal level White level measurement	$L_{\text {VOR }}$	T28A	T38	Potential measured with $\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vp}-\mathrm{p}$ video signal, under following conditions. T38 sync tip level: L Pedestal level: LPED White peak level: LWHT	700	800	900	mV
Simulated H insertion level	$\Delta \mathrm{HDR}$	T28A	T38	T38 DC level measured with 2.7V DC applied to T33. Using this as $L_{H D R}$, differential to $L_{\text {PED }}$ (see above) is calculated.	-150	0	+150	mV
White insertion level	$\Delta \mathrm{WHR}$	T28A	T38	T38 DC level measured with 1.3V DC applied to T33. Using this as $\mathrm{L}_{\text {WHR }}$, differential to $\mathrm{L}_{\text {WHT }}$ (see above) is calculated.	-150	0	+150	mV
REC YNR operation	$\mathrm{R}_{\text {YNR }}$	T28A	T25	T25 YNR characteristics measured with Serial $\mathrm{V}_{\text {IP }}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal 00 OFF input 10 (weak) 01 (medium) 11 (strong)	0 1.7 4.2 1	0 2.7 5.7 1	0 3.7 7.2 1	dB
$\mathrm{Y}_{\text {LPF }}$ frequency response characteristics 1	$\mathrm{Y}_{\text {LPF }}{ }^{1}$	T28A	T25	1 MHz response of T25 vs. 500 kHz with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard multiburst signal	-0.3	+0.2	+0.7	dB
$Y_{\text {LPF }}$ frequency response characteristics 2	$\mathrm{Y}_{\text {LPF }}{ }^{2}$	T28A	T25	2 MHz response of T 25 vs .500 kHz with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard multiburst signal	-1.4	-0.4	+0.6	dB
$\mathrm{Y}_{\text {LPF }}$ frequency response characteristics 3	$\mathrm{Y}_{\text {LPF }} 3$	T28A	T25	3 MHz response of T 25 vs .500 kHz with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard multiburst signal	-4	-2	0	dB
$\mathrm{Y}_{\text {LPF }}$ frequency response characteristics 4	$\mathrm{Y}_{\text {LPF }}{ }^{4}$	T28A	T25	4.43 MHz response of T25 vs. 500 kHz with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard multiburst signal			-25	dB
REC-FM output level	$\mathrm{V}_{\text {FM }}$		T18	T18 output level measured in no-signal input condition	304	320	336	mVp-p
Carrier frequency 1 (PAL)	$\mathrm{F}_{\mathrm{FM}}{ }^{1}$		T18	T18 output frequency measured in no-signal input condition	3.725	3.8	3.875	MHz
Carrier frequency 2 (NTSC)	$\mathrm{F}_{\mathrm{FM}}{ }^{2}$				3.325	3.4	3.475	MHz

Continued on next page

Continued from preceding page

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
REC-FM output level Secondary distortion	$\mathrm{H}_{\text {MOD }}$		T18	Secondary distortion measured in no-signal input condition		-40	-35	dB
Deviation 1 (PAL)	DEV1	T28A	T18	T18 deviation measured with $\mathrm{V}_{\mathrm{IN}}=$ white $100 \% 1 \mathrm{Vp}-\mathrm{p}$	0.95	1.00	1.05	MHz
Deviation 2 (NTSC)	DEV2	T28A	T18	T18 deviation measured with $\mathrm{V}_{\text {IN }}=$ white $100 \% 1 \mathrm{Vp}$-p	0.95	1.00	1.05	MHz
FM modulator linearity	$\mathrm{L}_{\text {MOD }}$	T26	T18	Output frequency set to f2.85 with 2.85 V DC applied to T26	-2	0	+2	\%
1/2f ${ }_{\text {H }}$ carrier shift	CS		T18	Output frequency shift	6.5	7.8	9.1	kHz
Emphasis gain	$\begin{aligned} & \mathrm{G}_{\mathrm{EMP}} 24 \\ & \mathrm{G}_{\mathrm{EMP}} 37 \end{aligned}$	T26A	$\begin{aligned} & \text { T24 } \\ & \text { T37 } \end{aligned}$	Level difference of T26A and T37 measured with $\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, 10 \mathrm{kHz}$ sine wave input	-0.75	-0.25	$+0.25$	dB
Detail enhancer characteristics 1	$\mathrm{G}_{\mathrm{ENH}}{ }^{1}$	T26A	T24	Level difference of T26A and T37 measured with $\mathrm{V}_{\mathrm{IN}}=158 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\mathrm{EMP}}{ }^{24}$	0.1	0.6	1.1	dB
Detail enhancer characteristics 2	$\mathrm{G}_{\mathrm{ENH}}{ }^{2}$	T26A	T24	Level difference of T26A and T24 measured with $\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\mathrm{EMP}}{ }^{24}$	1.3	2.3	3.3	dB
Detail enhancer characteristics 3	$\mathrm{G}_{\mathrm{ENH}}{ }^{3}$	T26A	T24	Level difference of T26A and T24 measured with $\mathrm{V}_{\mathrm{IN}}=15.8 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\mathrm{EMP}} 24$	1.8	3.3	4.8	dB
Nonlinear emphasis characteristics 1	$\mathrm{G}_{\text {NLEMP }} 1$	T26A	T24	Level difference of T26A and T24 measured with $\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\mathrm{EMP}} 24$	0.3	1.2	2.1	dB
Nonlinear emphasis characteristics 2	$\mathrm{G}_{\text {NLEMP }}{ }^{2}$	T26A	T24	Level difference of T26A and T24 measured with $\mathrm{V}_{\mathrm{IN}}=158 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\text {EMP }} 24$	2.5	3.8	5.0	dB
Nonlinear emphasis characteristics 3	$\mathrm{G}_{\text {NLEMP }} 3$	T26A	T24	Level difference of T26A and T24 measured Serial 1 with $V_{I N}=50 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input 2 Differential with $\mathrm{G}_{\mathrm{EMP}} 24$ 3 4	$\begin{array}{r} 6.5 \\ 4.5 \\ 2.5 \\ 0 \end{array}$	$\begin{gathered} 8.0 \\ 6.0 \\ 4.0 \\ 0 \end{gathered}$	$\begin{array}{r} 9.5 \\ 7.5 \\ 5.5 \\ 0 \end{array}$	dB
Main linear emphasis characteristics 1	$\mathrm{G}_{\mathrm{ME}}{ }^{1}$	T26A	T37	Level difference of T26A and T37 measured with $\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}-\mathrm{p}, 500 \mathrm{kHz}$ sine wave input Differential with $\mathrm{G}_{\mathrm{EMP}} 37$	10.5	11.0	11.5	dB
Main linear emphasis characteristics 2	$\mathrm{G}_{\mathrm{ME}}{ }^{2}$	T26A	T37	Level difference of T26A and T37 measured with $\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mVp}-\mathrm{p}, 2 \mathrm{MHz}$ sine wave input Differential with $\mathrm{G}_{\text {EMP }} 37$	12.5	13.0	13.5	dB
White clip level	L wc	T28A	T37	White clip level at T37 measured with CTL 1 $\mathrm{~V}_{\text {IN }}=$ white $100 \% 1.0 \mathrm{Vp}-\mathrm{p}$ 2	$\begin{aligned} & 185 \\ & 176 \end{aligned}$	$\begin{aligned} & 195 \\ & 185 \end{aligned}$	$\begin{aligned} & 205 \\ & 194 \end{aligned}$	\%
Dark clip level	L_{DC}	T28A	T37	Dark clip level at T37 measured with CTL 1 $\mathrm{~V}_{\mathrm{IN}}=$ white $100 \% 1.0 \mathrm{Vp}-\mathrm{p}$ 2	$\begin{aligned} & \hline-57.5 \\ & -52.0 \end{aligned}$	$\begin{aligned} & \hline-52.5 \\ & -47.0 \end{aligned}$	$\begin{aligned} & -47.5 \\ & -42.0 \end{aligned}$	\%
Video output linearity	LINY	T28A	T38	T38 stair levels measured with video signal $1.0 \mathrm{Vp}-\mathrm{p}$ (linearity unit, 5 stairs) input. Stair linearity determined by arithmetic processing.	-0.5	0	+0.5	dB
[PB mode Y]								
Current drain PB	$\mathrm{I}_{\text {CCP }}$			5V: pins 36, 41, 47; 7V: pin 76 Sum of influx current at pins $36,41,47,76$ measured	153	170	187	mA
Dropout compensation time	$\mathrm{T}_{\text {DOC }}$	$\begin{gathered} \hline \text { T15 } \\ \text { T26A } \end{gathered}$	T38	T20: $4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$ sine wave T26A: revert time for T38 output from when 0.5 Vp -p video signal T15 input is set to 0	10.5	12.5	14.5	H
DOC characteristics	$\mathrm{G}_{\text {DOC }}$	$\begin{gathered} \text { T15 } \\ \text { T26A } \end{gathered}$	T38	T15: $4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$ sine wave T26A: 0.5 Vp -p video signal Input/output response 5 H after setting T15 input to 0	-1.5	0	+1.5	dB
PB Y level	V-Y ${ }_{\text {OUT }}$	T15	T38	Playback Y level with DEV $=1.0 \mathrm{MHz} \mathrm{FM}$ signal input	2.00	2.10	2.20	Vp-p
Self-recording/playback Y level	R/P-out		T38	Playback Y level for self-recording/playback	1.93	2.10	2.27	Vp-p

Continued on next page

Continued from preceding page

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
FM demodulator linearity	$L_{\text {DEM }}$	T15	T25	$L_{D E M}=\frac{V_{\text {DEM }}{ }^{4}-\left(V_{D_{D E M}}{ }^{2}+V_{D_{D E M}}{ }^{6}\right) / 2}{V_{\text {DEM }}{ }^{6}-V_{\text {DEM }^{2}}} \times 100$	-3.5	0	+3.5	\%
Carrier leak	CL	T15	T25	Ratio of T25 4 MHz component and SDEM with $V_{I N}=300 \mathrm{mVp}-\mathrm{pf}=4 \mathrm{MHz}$			-35	dB
Playback YNR characteristics	$\mathrm{P}_{\mathrm{YNR}}$	T26A	T38	$\mathrm{V}_{\text {IN }}=$ white $50 \%+\mathrm{CW}$ $(15.8 \mathrm{mVp}-\mathrm{p})$ Serial 00 OFF Ratio of 32 fH component and 10 (weak) 32.5 fH component 01 (medium) 11 (strong)	$\begin{array}{r} 0 \\ -3.7 \\ -9.2 \\ -13.3 \end{array}$	$\begin{array}{r} 0 \\ -3.2 \\ -8.2 \\ -11.8 \end{array}$	$\begin{array}{r} 0 \\ -2.7 \\ -7.2 \\ -10.3 \end{array}$	dB
Nonlinear deemphasis characteristics 1	$\mathrm{G}_{\text {NLDE }}{ }^{1}$	T26A	T38	Input/output response measured with $\mathrm{V}_{\mathrm{IN}}=$ white $50 \%+$ sine wave $\mathrm{f}=2 \mathrm{MHz} 158 \mathrm{mVp}-\mathrm{p}$	-3.5	-2.5	-1.5	dB
Nonlinear deemphasis characteristics 2	$\mathrm{G}_{\mathrm{NLDE}^{2}}$	T26A	T38	$\mathrm{f}=2 \mathrm{MHz}, 50 \mathrm{mVp}-\mathrm{p}$ CTL 1 2 3 4	$\begin{array}{r} \hline 4.5 \\ 2.5 \\ 0.5 \\ 0 \end{array}$	$\begin{gathered} \hline 6.0 \\ 4.0 \\ 2.0 \\ 0 \end{gathered}$	$\begin{gathered} \hline 7.5 \\ 5.5 \\ 3.5 \\ 0 \end{gathered}$	dB
Double noise canceler characteristics 1	$\mathrm{G}_{\mathrm{WNC}}{ }^{1}$	T26A	T38	$\mathrm{f}=1.2 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}$, pin 69 open Gr2 bit 8/7 = "10", Gr5 bit $1=11 "$	-4	-3	-2	dB
Double noise canceler characteristics 2	$\mathrm{G}_{\mathrm{WNC}}{ }^{2}$	T26A	T38	$\mathrm{f}=1.2 \mathrm{MHz}, 50 \mathrm{mVp}-\mathrm{p}$, pin 69 open Gr2 bit 8/7 = " 10 ", Gr5 bit $1=11 "$	-16.5	-15.0	-13.5	dB
Double noise canceler characteristics 3	$\mathrm{G}_{\mathrm{WNC}}{ }^{3}$	T26A	T38	$\mathrm{f}=1.2 \mathrm{MHz}, 15.8 \mathrm{mVp}-\mathrm{p}$, pin 69 open Gr2 bit 8/7 = " 10 ", Gr5 bit $1=11 "$	-32	-30	-28	dB
Double noise canceler characteristics 4	$\mathrm{G}_{\mathrm{WNC}}{ }^{4}$	T26A	T38	$\mathrm{f}=2.5 \mathrm{MHz}, 15.8 \mathrm{mVp}-\mathrm{p}$, pin 69 open Gr2 bit 8/7 = "10", Gr5 bit $1=11 "$	-9	-8	-7	dB
Double noise canceler characteristics 5	$\mathrm{G}_{\mathrm{WNC}}{ }^{5}$	T26A	T38	$\mathrm{f}=2.5 \mathrm{MHz}, 15.8 \mathrm{mVp}-\mathrm{p}$, pin 69 open Gr2 bit $8 / 7=$ " 10 ", Gr5 bit $1=" 1 "$	-17	-15	-13	dB
PIC-CTL hard response characteristics 1	GPH^{1}	T26A	T38	$\mathrm{f}=1 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}, \mathrm{Gr} 5$ bit 6/5/4 = "1/0/0"	2.5	3.5	4.5	dB
PIC-CTL hard response characteristics 2	GPH^{2}	T26A	T38	$\mathrm{f}=2 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}, \mathrm{Gr} 5$ bit 6/5/4 = "1/0/0"	6	7	8	dB
PIC-CTL soft response characteristics 1	$\mathrm{G}_{\mathrm{PH}}{ }^{3}$	T26A	T38	$\mathrm{f}=1 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}, \mathrm{Gr} 5$ bit 6/5/4 = "0/0/0"	6	7	8	dB
PIC-CTL soft response characteristics 2	$\mathrm{G}_{\text {PH }}{ }^{4}$	T26A	T38	$\mathrm{f}=2 \mathrm{MHz}, 158 \mathrm{mVp}-\mathrm{p}, \mathrm{Gr} 5$ bit 6/5/4 $=$ "0/0/0"	-8	-7	-6	dB
Sync tip level Pedestal level White level measurement	$\mathrm{L}_{\text {VOR }}$	T26A	T38	T38 video output sync tip ($\mathrm{L}_{\text {SYN }}$), pedestal ($\mathrm{L}_{\text {PED }}$), white level ($\mathrm{L}_{\text {WHT }}$) potential measured with $\mathrm{V}_{\text {IN }}=$ white 100% 0.5 Vp-p	-	-	-	
Simulated V insertion level	$\Delta \mathrm{VDP}$	T26A	T38	DC voltage at T38 is measured when 5 V is applied to T33. Taking this as $\mathrm{L}_{\text {VDP }}$, differential with $\mathrm{L}_{\text {SYN }}$ above is calculated.	-50	0	+50	mV
Simulated H insertion level	$\Delta \mathrm{HDP}$	T26A	T38	DC voltage at T 38 is measured when 2.7 V is applied to T33. Taking this as $L_{\text {HDP }}$, differential with $L_{\text {PED }}$ above is calculated.	-100	0	+100	mV
White insertion level	$\Delta \mathrm{WHP}$	T26A	T38	DC voltage at T38 is measured when 1.3 V is applied to T33. Taking this as $L_{W H P}$, differential with $\mathrm{L}_{\mathrm{WHT}}$ above is calculated.	-100	0	+100	mV
Sync separation output level	$\mathrm{V}_{\text {SYP }}$	T26A	T37	Pin 37 output pulse crest value measured with $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{Vp}$-p video signal	4.0	4.2	4.4	Vp-p
Sync separation output pulse width	$\mathrm{P}_{\text {WSYP }}$	T26A	T37	Pin 37 output pulse width measured with $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{Vp}-\mathrm{p}$ video signal	4.35	4.65	4.95	$\mu \mathrm{S}$
Sync separation output Pre-delay time	$\Delta \mathrm{T}_{\text {SYP }}$	T26A	T37	Delay of output SYNC vs. input SYNC measured with $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{Vp}-\mathrm{p}$ video signal	0.7	0.9	1.1	$\mu \mathrm{S}$
4 V regulator	$V_{\text {REG }}$	T26A	T37	T31 DC level measured	3.8	4.0	4.2	V
FMAGC output level	$\mathrm{VF}_{\text {AGC }}$	T15	T17	Pin 17 signal amplitude measured with $\mathrm{V}_{\mathrm{IN}}=150,300,600 \mathrm{mVp}-\mathrm{p} 4 \mathrm{MHz} \mathrm{CW}$	325	350	375	mVp -p

Continued on next page

Continued from preceding page

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
[REC mode chroma]								
REC chroma low-range converter output level	$\mathrm{V}_{\mathrm{OR}^{-14}}$	T28A	T14A	T14A burst level measured with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ CTL 0 standard color bar signal 1	$\begin{aligned} & 215 \\ & 180 \end{aligned}$	$\begin{aligned} & 225 \\ & 190 \end{aligned}$	235 200	mVp-p
REC chroma/FM ratio	C/FM	T28A	$\begin{gathered} \mathrm{T} 14 \mathrm{~A} \\ \mathrm{~T} 18 \end{gathered}$	Down-converted chroma level/FM level ratio with 100\% chroma input $\left(\mathrm{R}_{\mathrm{L}}: 5.1 \mathrm{k} \Omega\right)$	-3.7	-3.0	-2.3	dB
Burst emphasis amount (NTSC mode)	G_{BE}	T28A	T14A	SP/EP and LP T14A burst level ratio with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal	5.5	6.0	6.5	dB
VXO oscillation level (PAL mode)	$\mathrm{V}_{\text {VXO-RP }}$	T28A	T56	T56 output amplitude measured with FET probe at $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal	300	500	700	mVp-p
VXO oscillation level (NTSC mode)	$\mathrm{V}_{\text {VXO-RN }}$	T28A	T56	T56 output amplitude measured with FET probe at $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal	300	500	700	mVp-p
REC ACC characteristics 1	$\mathrm{ACC}_{\mathrm{R}} 1$	T28A	T14A	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal and chroma signal only boosted by +6 dB T14A burst level measured and compared to VOR-14		0.2	0.5	dB
REC ACC characteristics 2	$\mathrm{ACC}_{\mathrm{R}}{ }^{2}$	T28A	T14A	$\mathrm{V}_{\text {IN }}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal and chroma signal only boosted by -6 dB T14A burst level measured and compared to VOR-14	-0.5	-0.1		dB
REC ACC Killer input level	$\mathrm{V}_{\text {ACCK-on }}$	T28A	T14A	T14A input burst level measured when output goes off and compared to standard input level, with $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vp}-\mathrm{p}$ standard color bar signal and chroma signal being gradually attenuated.		-26		dB
REC ACC Killer output level	$\mathrm{V}_{\text {OACCK }}$	T28A	T14A	T14A output level measured with spectrum analyzer and compared to VOR-14, in killer condition as described above.		-60	-50	dB
REC ACC Demodulator input level	$\mathrm{V}_{\text {ACCK-OFF }}$	T28A	T14A	From killer condition as described above, T14A input burst level is measured when output goes on with input chroma level being gradually increased. This is compared to standard input level.		-20		dB
REC APC Pull-in range 1	$\Delta^{\text {APC }}{ }^{1}$	T28A	T14A	Input signal: 50% white signal superimposed with $4.4336 \mathrm{MHz} 300 \mathrm{mVp}-\mathrm{p} \mathrm{CW}$. After checking that T14A output is on, CW frequency is raised until T14A output goes off. Frequency then is gradually reduced. CW frequency when T14A output goes on: f1	350			Hz
REC APC Pull-in range 2	$\Delta^{\text {APC }}{ }^{2}$	T28A	T14A	Same as above, CW frequency is lowered until T14A output goes off. Then frequency is gradually raised. CW frequency when T14A output goes on: f2			-350	Hz
REC AFC Pull-in range 1	${ }^{\text {f }} \mathrm{AFC}^{1}$	T28A	T51	$300 \mathrm{mVp}-\mathrm{p}, 15.6 \mathrm{kHz}$ pulse train with $5 \mu \mathrm{~s}$ pulse width is input. Pulse train frequency is raised until T51 output waveform is impaired. Then frequency is lowered. Pulse train frequency when T51 waveform becomes normal: f1	+1.0			kHz
REC AFC Pull-in range 2	${ }^{\dagger}{ }_{\text {AFC }}{ }^{2}$	T28A	T51	Same as above, pulse train frequency is lowered until T51 output waveform is impaired. Then frequency is raised. Pulse train frequency when T51 waveform becomes normal: f2			-1.0	kHz
BGP delay time	${ }^{\text {D }}$	T28	$\begin{aligned} & \hline \text { T37 } \\ & \text { T60 } \end{aligned}$	T37 and T60 waveforms are observed with standard color bar input to T28A	3.1	3.4	3.7	$\mu \mathrm{S}$
BGP width	${ }^{\text {W }}$ W				4.7	4.9	5.1	$\mu \mathrm{S}$

Continued on next page

Continued from preceding page

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
2 fsc output level	$\mathrm{V} 2_{\text {fsc }}$	T28A	T58	T58 level measured in no-signal input condition	360	400	440	mVp-p
2 fsc duty	D2 fsc	T28A	T58	T58 duty measured in no-signal input condition	40	50	60	\%
[PB mode chroma chroma]								
PB chroma video Output level (PAL mode)	$\mathrm{P}_{\text {Vop-38 }}$	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	From T15A in PB and SP mode, a chroma signal down-converted from the PAL chroma noise test signal (SP mode, burst $80 \mathrm{mVp}-\mathrm{p}$) and mixed with a 4 MHz 300 mVp -p sine wave is input. From T26A, a 50% white signal is input. Burst level is measured at T38.	490	580	670	mVp-p
$\begin{aligned} & \text { PB chroma video } \\ & \text { Output level } \\ & \text { (NTSC mode) } \end{aligned}$	$\mathrm{N}_{\text {Vop-38 }}$	$\begin{aligned} & \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	From T15A in PB and SP mode, a chroma signal down-converted from the NTSC chroma noise test signal (SP mode, burst $160 \mathrm{mVp}-\mathrm{p}$) and mixed with a 4 MHz 300 mVp -p sine wave is input. From T26A, a 50\% white signal is input. Burst level is measured at T38.	490	580	670	mVp-p
PB chroma Pin 46 output level	Vop-46	$\begin{aligned} & \text { T15A } \\ & \text { T26A } \end{aligned}$	T46	Under same conditions as for $\mathrm{P}_{\text {Vop-38 }}$, T46 burst level is measured.	170	200	230	mVp-p
PB ACC characteristics 1	$\mathrm{ACC}_{\mathrm{P}}{ }^{1}$	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T46	Under same conditions as for $\mathrm{P}_{\text {Vop-38 }}$, input chroma level is raised by +6 dB . T46 burst level is measured and compared to $\mathrm{P}_{\text {Vop-46 }}$.		0.5	0.8	dB
PB ACC characteristics 2	$\mathrm{ACC}_{\mathrm{p}}{ }^{2}$	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T46	Under same conditions as for $\mathrm{P}_{\text {Vop-38 }}$, input chroma level is raised by -6 dB . T46 burst level is measured and compared to $\mathrm{P}_{\text {Vop-38 }}$.	-0.5	-0.2		dB
PB killer input level	$\mathrm{V}_{\text {ACK-P }}$	$\begin{aligned} & \text { T15A } \\ & \text { T26A } \end{aligned}$	T46	Under same conditions as for $\mathrm{P}_{\text {Vop-38 }}$, input chroma level is attenuated and input burst level is measured when chroma output at T46 goes off (compared to standard input $80 \mathrm{mVp}-\mathrm{p}$)			-25	dB
Chroma output level in PPB killer condition	$\mathrm{V}_{\text {OACK-P }}$	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	T38 measured with spectrum analyzer and compared to $\mathrm{P}_{\mathrm{Vop}-38}$ in killer condition as described above.		-44	-40	dB
PB main converter carrier leak	C_{LP}	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	Under same conditions as for $\mathrm{P}_{\text {Vop-38, }}$, T38 is measured with spectrum analyzer and 4.43 MHz component is compared to 5.06 MHz component.		-40	-33	dB
Burst deemphasis (NTSC mode)	G_{BD}	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T46	$629 \mathrm{kHz}, 160 \mathrm{mVp}-\mathrm{p} \mathrm{CW}$ is mixed with $4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$ CW and input to T15A. 50% white signal is input from T26A. Output level during T46 burst interval and during other times is compared.	-5.75	-5.50	-5.25	dB
PB XO output level (PAL mode)	$\mathrm{V}_{\mathrm{XO}-\mathrm{PP}}$		T59	T59 output level measured with FET probe in PB mode	300	500	700	mVp-p
PB XO oscillator frequency deviation (PAL mode)	$\triangle^{\text {f }}$ XOP		T59	T59 frequency measured in PB mode: f	-9	0	+9	Hz
NTSC -> PAL conversion V axis burst level	$\mathrm{V}_{\text {BNAP }}$	$\begin{aligned} & \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	From T15A, down-converted chroma noise test signal mixed with $4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p} \mathrm{CW}$ is input. From T26A, 50% white signal is input. -45° burst level at T38 is measured and compared to $\mathrm{P}_{\text {Vop-38 }}$	-1	0	+1	dB
NTSC -> PAL conversion Burst level ratio	$\triangle \mathrm{B}$-NAP	$\begin{aligned} & \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	Under same conditions as above, $+45^{\circ}$ burst level is measured and compared to $\mathrm{V}_{\mathrm{BNAP}}$	-2	0	+2	dB

Continued from preceding page

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
NTSC -> PAL conversion chroma phase	P-NAP	$\begin{aligned} & \hline \text { T15A } \\ & \text { T26A } \end{aligned}$	T38	$4 \mathrm{MHz}, 300 \mathrm{mVp}-\mathrm{p}$ CW and 100% chroma signal phase shifted by -90° from burst are mixed and input to T15A. 50% white signal is input to T26A. Chroma phase when pin 67 is 0 V is measured and taken as $\theta 1$. Chroma phase when pin 67 is 5 V is measured and taken as $\theta 2$. P-NAP $=\theta 1-\theta 2$	160	180	200	deg
[REC mode/EQ]								
REC EQ characteristics 1	$\mathrm{G}_{\text {REQ1 }}$	T22	T18	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ Input/output response measured	-3	-2	-1	dB
REC EQ secondary distortion	$\mathrm{H}_{\text {REQ }}$	T22	T18	Under same conditions as above, secondary harmonics are measured.		-40	-35	dB
REC EQ characteristics 2	$\mathrm{G}_{\text {REQ2 }}$	T22	T18	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=627 \mathrm{kHz}$ Input/output response measured			-20	dB
REC EQ characteristics 3	$\mathrm{G}_{\text {REQ3 }}$	T22	T18	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=1.07 \mathrm{MHz}$ Input/output response measured			-20	dB
REC EQ characteristics 4	$\mathrm{G}_{\text {REQ4 }}$	T22	T18	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4.5 \mathrm{MHz}$ Input/output response measured	-3.3	-2.3	-1.3	dB
REC EQ characteristics 5	$\mathrm{G}_{\text {REQ5 }}$	T22	T18	$\mathrm{V}_{\mathrm{IN}}=500 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=2.0 \mathrm{MHz}$ Input/output response measured	-1	0	+1	dB
[PB mode/EQ]								
PB EQ characteristics 1	$\mathrm{GPEQ1}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4 \mathrm{MHz}$ Input/output response measured	-2.5	-1.1	0.0	dB
PB EQ secondary distortion	$\mathrm{H}_{\text {PEQ }}$	T15A	T17	Under same conditions as above, secondary harmonics are measured.		-40	-30	dB
PB EQ characteristics 2	$\mathrm{G}_{\text {PEQ2 }}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=627 \mathrm{kHz}$ Input/output response measured			-30	dB
PB EQ characteristics 3	$\mathrm{G}_{\text {PEQ3 }}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}$ High-range trap frequency and gain measured		7.8	-25	MHz
PB EQ characteristics 4	$\mathrm{G}_{\text {PEQ4 }}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=1.07 \mathrm{MHz}$ Input/output response measured			-30	dB
PB EQ characteristics 5	$\mathrm{G}_{\text {PEQ5 }}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=4.5 \mathrm{MHz}$ Input/output response measured	-1	0	+1	dB
PB EQ characteristics 6	$\mathrm{G}_{\text {PEQ6 }}$	T15A	T17	$\mathrm{V}_{\mathrm{IN}}=400 \mathrm{mVp}-\mathrm{p}, \mathrm{f}=2.0 \mathrm{MHz}$ Input/output response measured	-11	-10	-9	dB

Continued on next page

Electrical Characteristics of Audio System

Parameter	Symbol	Input	Output	Conditions	Ratings			Unit
					min	typ	max	
LINE AMP voltage gain (PB)	$\mathrm{V}_{\mathrm{GLP}}$	T11	T77	$\mathrm{V}_{\text {IN }}=-30 \mathrm{dBV}$	23.0	23.5	24.0	dB
LINE AMP voltage gain (A1, A2, A3)	$\mathrm{V}_{\mathrm{GLR}}$	$\begin{aligned} & \hline \text { T71 } \\ & \text { T73 } \\ & \text { T75 } \end{aligned}$	T77	$\mathrm{V}_{\mathrm{IN}}=-30 \mathrm{dBV}$	23.0	23.5	24.0	dB
LINE AMP distortion (PB)	THD ${ }_{\text {L }}$	T11	T77	$\mathrm{V}_{\text {IN }}=-30 \mathrm{dBV}$	0.01	0.1	0.4	\%
LINE AMP Output noise voltage (PB)	$\mathrm{V}_{\mathrm{NOL}}$	-	T77	$\mathrm{Rg}=1 \mathrm{k} \Omega$, DIN audio filter	-80.0	-74.0	-70.5	dBV
	$\mathrm{V}_{\text {OML }}$	T11	T77	Output voltage for 1% THD $\quad: \mathrm{V}_{\mathrm{CC}}=6.8 \mathrm{~V}$	1.3	1.5	1.7	Vrms
Maximum output voltage (PB)				: $\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	1.5	1.7	1.9	
Output voltage with LINE AMP ALC	V_{OA}	T73	T77	$\mathrm{V}_{\mathrm{IN}}=-28 \mathrm{dBV}$	-7	-6	-5	dBV
LINE AMP ALC effect	ALC	T73	T77	T73 input level reduced from -28 dBV to -8 dBV	0	1	3	dB
LINE AMP ALC distortion	THD ${ }_{\text {A }}$	T73	T77	$\mathrm{V}_{\mathrm{IN}}=-28 \mathrm{dBV}$	0.01	0.1	0.5	\%
MUTE attenuation	$\begin{aligned} & M_{P B} \\ & M_{A} 1 \\ & M_{A}{ }^{2} \\ & M_{A} 3 \end{aligned}$	$\begin{aligned} & \hline \text { T11 } \\ & \text { T71 } \\ & \text { T73 } \\ & \text { T75 } \end{aligned}$	T77	-10 dBV signals applied to all inputs and MUTE enabled.	80	90	120	dB
EQ AMP open circuit voltage gain	$\mathrm{VG}_{\mathrm{OE}}$	T7	T10	$\mathrm{V}_{\mathrm{IN}}=-66 \mathrm{dBV}$	58	64	70	dB
EQ AMP input converted noise voltage	$\mathrm{V}_{\text {NIE }}$	-	T10	$\mathrm{Rg}=620 \Omega$, DIN audio filter	0.1	0.8	1.8	$\mu \mathrm{Vrms}$
REC AMP voltage gain	VG ${ }_{\text {R }}$	T79	T1	$\mathrm{V}_{1 \mathrm{~N}}=-20 \mathrm{dBV}$	13.6	14.1	14.6	dB
REC AMP distortion	$\mathrm{THD}_{\mathrm{R}}$	T79	T1	$\mathrm{V}_{\text {IN }}=-20 \mathrm{dBV}$	0.001	0.1	0.4	\%
REC AMP Maximum output voltage	$\mathrm{V}_{\text {OMR }}$	T79	T1	Output voltage for 1% THD $: V_{C C}=6.8 \mathrm{~V}$ Output voltage for 1% THD $: \mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$				Vrms
Current drain (REC)	${ }^{\text {I CCRA }}$	-	-	Influx current measured at pin 76 $: V_{\mathrm{CC}}=6.8 \mathrm{~V}$ (no-signal condition) $: \mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$		$\begin{aligned} & \hline 11.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.2 \\ & 13.8 \\ & \hline \end{aligned}$	mA
Current drain (PB)	${ }^{\text {I CCPA }}$	-	-	Influx current measured at pin 76 $: \mathrm{V}_{\mathrm{CC}}=6.8 \mathrm{~V}$ (no-signal condition) $: \mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	7.6 8.0	9.5 10.0	$\begin{aligned} & \hline 11.4 \\ & 12.0 \\ & \hline \end{aligned}$	mA
DC offset voltage (PB) in MUTE condition	$\mathrm{MT}_{\mathrm{DCO}}$	-	T77	DC offset voltage at pin 77 measured for MUTE ON (no-signal condition)	0	30	50	mV

Pin Function

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
1	A-REC-OUT	3.3 V	CW, 3.2 Vp-p	A10277
2	A-GND	OV		
3	A-EQ-SW1	3.3 V	REC MODE SP-CW LP, EP-OV REC MODE NONE	
4	A-EQ-SW2	OV	REC MODE NONE PB, EP MODE SP, LP-CW EP-OV	(4) A10279
5	A-REC-SW	3.3 V	REC MODE DC $V_{\text {REF }}$ PB MODE CW 1 mVp-p	$V_{\text {REF }}$ A10280
6	$\begin{aligned} & \text { A-HEAD } \\ & \text { SW-CTL } \end{aligned}$	REC 7V PB 0V	DC	A10281
7	A-EQ-IN	3.3V	REC DC 3.3V PB $\mathrm{CW}, 1 \mathrm{mVp}-\mathrm{p}$	
8	A-EQ-NFB	3.3V	REC DC 3.3 V PB $\mathrm{CW}, 1 \mathrm{mVp}-\mathrm{p}$	

Continued on next page

Continued from preceding page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
15	PB Y-FM/C-IN C-IN (FROM Pre)	REC 4.2V PB 3.2V	PB-Y-FM $400 \mathrm{mVp}-\mathrm{p}$	
16	PM (R03)	REC 1.6 V PB 1.6V	DC	A10291
17	PB-EQ-OUT	REC 2.6 V PB 2.6V	FM 730 mVp -p PB Y-FM $340 \mathrm{mVp}-\mathrm{p}$ A10292	A10293
18	REC-Y FM-OUT	REC 1.9 V PB 1.9 V	PEC Y-FM 730 mVp -p A10294	A10295
19	REC-H-OUT	REC 4.2 V REC PAUSE 2.5 V EE or PB 0 V	DC	A10296

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
20	PB-Y-FM-IN (FROM EQ)	REC 4.7V PB 2.5V	FM 700 mVp-p PB-Y FM 320 mVp-p	
21	AGC-TC2	REC 1.6 V PB 1.7V	DC	
22	PB-EMITTER -PEAKING	REC 0V PB 2.6V	DC	A10301
23	MAIN-EMPH OUT	REC 2.1V PB 0V		(24) A10303
24	MAIN-EMPH FILTER			(24)

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
25	REC-Y MAIN-DE-EMPH. OUT	REC 1.6V		
26	CLAMP-IN	REC 2.9 V PB 2.8V		
27	Y-GND	OV		
28	VIDEO-IN1	REC VSYNC 1.7 V PB OV	DC	(28)
29	FBC-FILT (Feed Back Clamp)	REC 2.6 V PB 2.6V	DC	
30	VIDEO-IN2	REC VSYNC 1.7 V PB OV		(30)

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
31	REG	REC 4.1V PB 4.1V	DC	
32	VIDEO-IN3	REC $\mathrm{V}_{\text {SYNC }} 1.7 \mathrm{~V}$ PB 0V		
33	QV/QH-INS CHARA-INS		0 to 0.8 V : Through 1.0 to 2.2 V : Character Ins. 2.5 to 3.2 V : QH Ins. 3.8 to $\mathrm{V}_{\mathrm{CC}} \mathrm{V}$: QV Ins.	
34	VPS-OUT	REC VSYNC 1.7 V PB OV		A10322
35	VIDEO-AGC-IN	REC 2.3V PB 3.1V		

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
36	$\mathrm{Y}-\mathrm{V}_{\mathrm{CC}}$	5 V	DC	
37	SYNC-OUT			
38	VIDEO-OUT	$\mathrm{V}_{\text {SYNC }} 0.8 \mathrm{~V}$		
39	VCA-FILT	REC 3.1V PB 3.1V	DC	
40	VCA-IN (CLAMP)	REC 2.8 V PB 2.8V		
41	$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	5 V	DC	

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
42	Y-CCD-DRIVE	REC 1.8 V		
		PB 1.8V		A10335
43	NTSC-H OUT	\qquad WITHOUT NTSC MODE OV	DC	A10336
44	PQ 2 (RO2)	REC 1.7 V PB 1.8 V	DC	A10337
45	PB CHROMA IN	REC 1.8 V PB 1.9 V	$210 \mathrm{mVp}-\mathrm{p}$ A10338	A10339
46	PB CHROMA OUT	REC 0V PB 2.0V	210 mVp -p A10340	A10341

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
47	$\mathrm{C}-\mathrm{V}_{\mathrm{CC}}$	5 V	DC	
48	C-CCD-DRIVE2	REC 2.8 V		
		PB 2.8V		A10344
49	SLD-FILT	REC 4.0V PB 4.1V	DC	(51)
50	C-CCD-DRIVE 1	REC 2.9 V PB 2.9V	150mVp-p A10347	A10348
51	AFC/APC-FILT	REC 4.0V PB 4.0V		(51) A10351
52	C-CCD-IN	3.2 V		

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
53	PA STOP-TR-SW	OV	DC	
54	REC-APC-FILTER	2.1V	 A10355	(54)
55	VXO/XO-IN	REC 4.0V PB 3.9V		
56	VXO/XO-OUT	REC 2.5 V PB 2.5V		
57	C-GND	OV	DC	
58	$\begin{aligned} & 2 \mathrm{fsc} / \mathrm{PB}-\mathrm{H} \\ & \text { OUT } \end{aligned}$	REC 1.5 V PB 2.8V		A10365

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
59	$\begin{array}{\|l} \hline \mathrm{RL} \\ \text { (RO4) } \end{array}$	REC 1.5 V PB 1.5 V	DC	
60	BGP-OUT		SYNC+BGP SYNC 1.4V (typ) BGP 4.0V or MORE	A10367
61	KILL-FILT	Color 2.0V killer 3.0V	DC	(61)
62	ACK/SLD OUT	ACK-OUT MODE SLD-OUT MODE	KILLER MODE 4V or MORE COLOR MODE OV	
63	SERIAL-CLOCK-IN		A10371	

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
64	$\begin{aligned} & \text { SERIAL- } \\ & \text { DATA-IN } \end{aligned}$		A10373	
65	$\begin{aligned} & \text { PQ1 } \\ & \text { (RO1) } \end{aligned}$	REC 1.6 V PB 1.6 V	DC	A10375
66	C-ROTARY-PULSE-IN			A10377
67	CSC-PULSE-IN			(67) A10379
68	PAL-PULSE	$+45^{\circ}$ 4 V or MORE $+45^{\circ}$ 1V or LESS		
69	NC-CTL	REC 2.1V PB 2.1V	DC	

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
70	A-MUTEON/OFF	MUTE 3 V or MORE	DC	
71	A-LINE-IN1	$3.3 \mathrm{~V}$	REC CW, 95 mVp-p PB DC 3.3V	
72	A-ALC-DET	OV	REC: ADAPTIVE PB DC OV	
73	A-LINE-IN2	3.3 V	REC CW, 95 mVp -p PB DC 3.3V	
74	A- $\mathrm{V}_{\text {REF- }}$ FILTER	3.3 V	DC	

Continued on next page

Continued from preceding page

Pin number	Pin name	Standard DC voltage	Signal waveform	Equivalent circuit
75	A-LINE-IN3	3.3V	REC CW, 95 mVp -p PB DC 3.3V	
76	$\mathrm{A}-\mathrm{V}_{\mathrm{CC}}$	7 V	DC	
77	A-LINE-OUT	3.3 V	CW, 1.4 Vp-p	A10388
78	A-ALC DET-IN	OV	CW, 1.0 Vp-p	A10389
79	A-REC-IN	3.3V	REC CW, $745 \mathrm{mVp}-\mathrm{p}$ PB DC 3.3V	
80	A-REC-NFB	3.3V	REC CW $745 \mathrm{mVp}-\mathrm{p}$ PB DC 3.3V	

Block Diagram and Sample Application Circuit

Test Circuit Diagram

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1999. Specifications and information herein are subject to change without notice.

