A7256

High-Fidelity Audio Signal Record/Playback Processing Circuit for VCR Products

Overview

The LA7256 provides the record and playback amplification functions required for high-fidelity audio signal processing in VCR systems. The record system supports S-VHS and over-recording, and also supports the provision of an adjustment-free record current by using a constant-current regulated output scheme incorporating an AGC circuit. The playback system consists of a high-gain preamplifier with a small DC offset, and includes a builtin EP gain increasing function.

Functions

- Preamplifier (two channels)
- RF switching between CH1 and CH2
- Record AGC amplifier (for over-recording and S-VHS)
- Constant-current regulated output record amplifier
- Buffer amplifier that can be used in both record and playback

Features

- Minimal number of required external components
- The playback amplifier output DC offset is small.
- Built-in EP mode gain emphasis
- Record AGC that handles three modes (for an adjustment-free record current)
- Built-in buffer amplifier that can be used to construct an active filter.

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Allowable power dissipation	Pd max	Ta ≤ 65°C	700	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-55 to +150	°C

Operating Conditions at $Ta=25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating supply voltage range	V _{CC} op		4.5 to 5.5	V

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

Package Dimensions

unit: mm **3067-DIP24S**

Operating Characteristics at Ta = 25°C, V_{CC} = 5 V, in the specified test circuit

Parameter	Symbol	Conditions	min	typ	max	Unit	
Playback Model						Onic	
Circuit current	laan	No input: the pin 14 influx current	13	18	23	mA	
Voltage gain, CH1	G _{VP1}	Pin 20 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = low: measure the pin 3 output.	72.5	75.5	78.5	dB	
Voltage gain, CH2	G _{VP2}	Pin 17 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = high: measure the pin 3 output.	72.5	75.5	78.5	dB	
Voltage gain difference	ΔG _{VP}	G _{VP1} – G _{VP2}	-2	0	2	dB	
EP gain emphasis	ΔG _{EP}	Pin 20 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = low: the ratio of the pin 3 outputs when pin 2 is high/low	1.7	2.4	3.1	dB	
Frequency characteristics, CH1	f _{P1}	Pin 20 input = 100 μ Vp-p, pin 1 = low: the difference in the levels on pin 3 when f = 2.2 MHz and 1.0 MHz	-3.0	-1.0	0	dB	
Frequency characteristics, CH2	f _{P2}	Pin 17 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = high: the difference in the levels on pin 3 when f = 2.2 MHz and 1.0 MHz	-3.0	-1.0	0	dB	
Crosstalk CH1 to CH2	$CT_{1 \rightarrow 2}$	Pin 17 input = 0, pin 20 input = 100μ Vp-p, f = 1.5 MHz: the difference in the pin 3 output levels when pin 1 goes from low to high		-40	-35	dB	
Crosstalk CH2 to CH1	$\text{CT}_{2 \rightarrow 1}$	Pin 20 input = 0, pin 17 output = 100 μ Vp-p, f = 1.5 MHz: the difference in the pin 3 output levels when pin 1 goes from high to low		-40	-35	dB	
Equivalent input noise voltage CH1	V _{NP1}	With pin 20 grounded through 0.01 μ F and 1 Ω , pin 1 = low: the pin 3 noise in input equivalent ^{*1}		0.8	1.0	μVrms	
Equivalent input noise voltage CH2	V _{NP2}	With pin 17 grounded through 0.01 μ F and 1 Ω , pin 1 = high: the pin 3 noise in input equivalent ^{*1}		0.8	1.0	μVrms	
Second harmonic distortion CH1	2THD ₁	Pin 20 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = low: the second harmonic in the pin 3 output		-50	-40	dB	
Second harmonic distortion CH2	2THD ₂	Pin 17 input = 100 μ Vp-p, f = 1.5 MHz, pin 1 = high: the second harmonic in the pin 3 output		-50	-40	dB	
Maximum output voltage CH1	V _{OMP1}	With the pin 20 input varying, f = 1.5 MHz, pin 1 = low: when the pin 3 third harmonic distortion is -30 dB	2.0			Vp-p	
Maximum output voltage CH2	V _{OMP2}	With the pin 17 input varying, f = 1.5 MHz, pin 1 = high: when the pin 3 third harmonic distortion is -30 dB	2.0			Vp-p	
Output DC offset 1	ΔV _{ODC1}	Pin 17 and 20 inputs = 0, pin 1 = low, pin 2 = low (SP): the difference in the pin 3 DC level when pin 1 goes from low to high	-30	0	+30	mV	
Output DC offset 2	ΔV _{ODC2}	Pin 17 and 20 inputs = 0, pin 1 = low, pin 2 = high (EP): the difference in the pin 3 DC level when pin 1 goes from low to high	-50	0	+50	mV	
Head switching: CH1 hold voltage	V _{HS1}	The pin 1 DC voltage required to operate CH1	0		1.0	V	
Head switching: CH2 hold voltage	V _{HS2}	The pin 1 DC voltage required to operate CH2	3.0		V _{CC}	V	
Playback mode switch on resistance	R _{SW}	Calculate from the voltage difference on pin 16 when the pin 16 influx current is 1 mA and 2 mA.		4.0	6.0	Ω	
SP hold voltage	V ₂ SP	The pin 2 voltage required to hold SP mode	0		1.0	V	
EP hold voltage	V ₂ EP	The pin 2 voltage required to hold EP mode	3.0		V _{CC}	V	
PB hold voltage	V _{5L}	The pin 5 voltage required to hold PB mode	0		1.0	V	
[Record Mode]							
Circuit current	I _{CCR}	No signal, the pin 14 influx current	45	63	81	mA	
Output current	I _{OR}	Pin 9 input = 180 mVp-p, f = 1.5 MHz: measure the pin 16 output	48	53	58	mAp-p	
AGC control characteristics 1	ΔV_{AGC1}	Pin 9 input = 90 and 180 mVp-p, f = 1.5 MHz: the ratio of the pin 16 output levels	-0.5	-0.2		dB	
AGC control characteristics 2	ΔV _{AGC2}	Pin 9 input = 360 and 180 mVp-p, f = 1.5 MHz: the ratio of the pin 16 output levels		0.2	0.5	dB	
Cross modulation distortion 0.4 MHz component	CMD ₀₄	For a pin 9 input ^{*2} , the 0.4 MHz spurious signal in the pin 16 output current			-40	dB	
Cross modulation distortion 0.9 MHz component	CMD ₀₉	For a pin 9 input ^{*2} , the 0.9 MHz spurious signal in the pin 16 output current			-40	dB	

 Note:
 1. Measure the input noise voltage after passing the pin 3 output (playback FM output) through a 1.1 MHz low-pass filter.

 2.
 1.3 MHz (70 mVp-p) + 1.7 MHz (180 mVp-p)

Continued on next page.

Parameter	Symbol	Conditions	min	typ	max	Unit
Over-record hold voltage	V _{11M}	The pin 11 DC voltage for over-record mode	1.5		3.0	V
Over-record current ratio	I _{O-OV}	Pin 9 input = 180 mVp-p, f = 1.5 MHz, pin 11 = middle level: measure the pin 16 output current	1.7	2.2	2.7	dB
S-VHS hold voltage	V _{11H}	The pin 11 DC voltage for S-VHS mode	3.5		V _{CC}	V
S-VHS current ratio	I _{O-SV}	Pin 9 input = 180 mVp-p, f = 1.5 MHz, pin 11 = high: measure the pin 16 output current	-2.0	-2.6	-3.2	dB
Record mute hold voltage 1	V _{4L}	The pin 4 DC voltage when record muting is off	0		1.0	V
Record mute hold voltage 2	V _{4H}	The pin 4 DC voltage when record muting is on	3.0		V _{CC}	V
Mute attenuation	I _{OR} , M _U	Pin 9 input = 180 mVp-p, f = 1.5 MHz, pin 4 = high: measure the pin 16 output current			-40	dB
Record hold voltage	V _{5H}	The pin 5 voltage required to hold record mode	3.0		V _{CC}	V
[Built-in Buffer]						
Buffer I/O DC offset	ΔV_{BUF}		-10		10	mV
Buffer frequency characteristics	f _{BUF}	Pin 9 input = 180 mVp-p, f = 1/10 MHz	-1		1	dB

Test Circuit Diagram

Unit (resistance: Ω, capacitance: F) *: Organic Semiconductor

Application Circuit Block Diagram

Unit (resistance: Ω , capacitance: F)

Pin Functions

Pin No.	Symbol	Pin internal equivalent circuit	Function
1	A-HEAD PULSE	1 30K 2 30K 2 55K 2 ↓ 1 402656	Low: 0 to 1.0 V \rightarrow CH1 High: 3.0 to V _{CC} \rightarrow CH2
2	ES/SP	2 30K Q 30K Q 55K Q 55K Q 402657	Low: 0 to 1.0 V \rightarrow SP High: 3.0 to V _{CC} \rightarrow EP
3	PB-FM OUT	3 1000 3 W 400 # A 777 A02658	
4	REC MUTE	(4) 30k 0 ₹ ₹5k 0 777 402559	Low: 0 to 1.0 V \rightarrow Mute off High: 3.0 to V _{CC} \rightarrow Mute on
5	REC	5 5 30 K Q 30 K Q 777 402560	Low: 0 to 1.0 V \rightarrow PB High: 3.0 to V _{CC} \rightarrow REC
6	GND		Ground for the playback output stage and record circuits

Continued on next page.

Pin No.	Symbol	Pin internal equivalent circuit	Function
7	BUFF IN	7 1000 50k0 W 200#A 1/2VCC A02561	
8	BUFF OUT	B 200 # A 777 A02662	DC voltage = 1/2 V _{CC}
9	REC FM IN	9 5ka 100a 9 	Record amplifier input
10	AGC FILT	10 10 10kΩ 15kΩ ₹300Ω 777 777 402664	Detects the record amplifier AGC detector output
11	REC MODE	11 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$15k0 \$100μA \$10μA \$100μ	Low: 0 to 1.0 V \rightarrow Normal Middle: 1.5 to 3.0 V \rightarrow Over-record High: 3.5 V to V _{CC} \rightarrow S-VHS
12	REC OUT GND		Ground for the record output circuits

Continued on next page.

Pin No.	Symbol	Pin internal equivalent circuit	Function		
13	REC-CURR-ADJ	REC DUT 3000 13 W AGC DET A02655	Converts the record output current output to a voltage.		
14	V _{CC}				
15	REC BIAS	ВОО # А О 1.5 m А ВЕС ОUT АGC Амр 15 W 1.6 m А 600 # А 1.6 m А 600 # А 402667	Input block for the record current amplifier		
16	REC OUT	(16) PB ON V M A02668	Switch for record current output and playback mode on On in PB mode		
17	CH2-IN	10KQ 10KQ 10KQ M A02559	Playback amplifier CH2 input		
18	PSW2	1B 40K 0 50K 0 40K 0	CH2 head current supply		

Pin No.	Symbol	Pin internal equivalent circuit	Function
19	FILT2	1000 1000 1000 1000 1.5k0 1.5k0 0 0 0 0 0 0 0 0 0 0 0 0 0	Generates the playback amplifier CH2 DC bias.
20	CH1-IN	20 REC ON 777 777 777 777 777 777 777	Playback amplifier CH1 input
21	PB GND		Ground for the playback amplifier
22	FILT1	100 Ω 22 1.5 k Ω 1.5 k Ω 00 μA 10 k Ω 10 k Ω 1	Generates the playback amplifier CH1 DC bias.
23	NC		
24	PSW1	24 40 k 0 ₹ 777 777 777 777 777 777 777 777 777 402674	Record amplifier CH2 head current supply

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1995. Specifications and information herein are subject to change without notice.