
LB11990W

Three-Phase Brushless Motor Driver

Package Dimensions

unit: mm

3190-SQFP64

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} 1 max		7	V
Maximum supply voltage 2	V _{CC} 2 max		8.5	V
Maximum supply voltage 3	VS_C max	Capstan motor driver	7.0	V
Maximum supply voltage 4	VS_D max	Drum motor driver	7.0	V
Maximum supply voltage 5	VS_L max	Loading motor driver	7.0	V
Applied output voltage	Vo max		8.0	V
Applied input voltage	VI1 max	Control circuits	-0.3 to V _{CC} 1 + 0.3	V
	VI2 max	U, V, W, COM	8.0	V
Capstan motor output current	IOC max		1.0	А
Drum motor output current	IOD max		1.0	А
Loading motor output current	IOL max		0.6	Α
Allowable power dissipation	Pd max	IC only	0.6	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

LB11990W

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage 1	V _{CC} 1	$V_{CC}1 \le V_{CC}2$	2.7 to 6.0	V
Power supply voltage 2	V _{CC} 2		3.5 to 8.5	V
Power supply voltage 3	VS_C	VS_C ≤ V _{CC} 2	to 7.0	V
Power supply voltage 4	VS_D	VS_D ≤ V _{CC} 2	to 7.0	V
Power supply voltage 5	VS_L	VS_L ≤ V _{CC} 2	2.2 to 7.0	V
Hall input amplitude	VHALL	Capstan motor	±20 to ±80	mVp–p

Electrical Characteristics/Capstan Motor Driver Block at Ta = 25 °C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_{S} = 1.5V

Parameter Symbol Conditions min Typ max Worlt					<u> </u>	Ratings		
Vcc2 power supply current Icc2 Iout = 100 mA VSTBY_C = 3V 6 12 mA		Parameter	Symbol	Conditions			max	Unit
Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V	ent	Vcc1 power supply current	lcc1	lout = 100 mA VSTBY_C = 3V		4	8	mA
Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V	curr	Vcc2 power supply current	lcc2	lout = 100 mA VSTBY_C = 3V		6	12	mA
Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V	pply	Vcc1 idle current	lcc1Q	VSTBY_C = 0V		2.1	4	mA
Upper side residual voltage VXH1 lout = 0.2A 0.15 0.22 0.29 V	er su	Vcc2 idle current	Icc2Q	VSTBY_C = 0V			100	μΑ
Lower side residual voltage VXL1 lout = 0.2A 0.15 0.20 0.25 V	Pow	Vs idle current	IsQ	VSTBY_C = 0V		75	100	μΑ
Upper side residual voltage VXH2 lout = 0.5A 0.25 0.40 V	2	Upper side residual voltage	VXH1	lout = 0.2A	0.15	0.22	0.29	V
Lower side residual voltage VXL2 lout = 0.5A 0.25 0.40 V	\$	Lower side residual voltage	VXL1	lout = 0.2A	0.15	0.20	0.25	V
Output saturation voltage	23	Upper side residual voltage	VXH2	lout = 0.5A		0.25	0.40	V
Overlap amount O.L RL = 39Ω × 3, Rangle = 20 kΩ Note 2 73 80 87 %	>	Lower side residual voltage	VXL2	lout = 0.5A		0.25	0.40	V
Input offset voltage VHOFF Note 1 Design target value -5 +5 mV		Output saturation voltage	Vosat	lout = 0.8A, Sink + Source			1.40	V
$ \begin{array}{ c c c c c } \hline & Common mode input range & VHCM & Rangle = 20~k\Omega & 0.95 & 2.1 & V \\ \hline & Input/output voltage gain & VGVH & Rangle = 20~k\Omega & 24.5 & 27.5 & 30.5 & dB \\ \hline & Input/output voltage gain & VGVH & Rangle = 20~k\Omega & 24.5 & 27.5 & 30.5 & dB \\ \hline & Input/output voltage & VSTH & 2.5 & V_{CC}1 & V \\ \hline & Input current & ISTIN & VSTBY_C = 3V & -0.2 & +0.7 & V \\ \hline & Input current & ISTIN & VSTBY_C = 3V & 50 & \muA \\ \hline & Input current & ISTIK & VSTBY_C = 0V & -30 & \muA \\ \hline & Input current & IFRCIN & VFRC_C = 0V & -0.2 & +0.4 & V \\ \hline & Input current & IFRCIN & VFRC_C = 3V & 20 & 30 & \muA \\ \hline & Input current & IFRCIN & VFRC_C = 0V & -30 & \muA \\ \hline & Input current & IFRCIN & VFRC_C = 0V & -30 & \muA \\ \hline & Input current & IFRCIN & VFRC_C = 0V & -30 & \muA \\ \hline & Input offset voltage & VHALL & IH = 5 mA, VH(+) - VH(-) & 0.75 & 0.85 & 0.95 & V \\ \hline & Input offset voltage & VFGOFF & -3 & +3 & mV \\ \hline & Input offset voltage & VFGOFF & -3 & +3 & mV \\ \hline & Input bias current & IbFG & VFGIN+ = VFGIN- = 1.5V & -100 & +100 & nA \\ \hline & Input bias current offset & \DeltaIbFG & VFGIN+ = VFGIN- = 1.5V & -100 & +100 & nA \\ \hline & Common mode input range & VFGOM & 1.2 & 2.5 & V \\ \hline & High level output voltage & VFGOH & With internal pull-up & 2.8 & V \\ \hline & Voltage gain & VGFG & Note 1 Design target value & 100 & dB \\ \hline \end{tabular}$		Overlap amount	O.L	$RL = 39\Omega \times 3$, Rangle = 20 k Ω Note 2	73	80	87	%
High level voltage	ifier	Input offset voltage	VHOFF	Note 1 Design target value	-5		+5	mV
High level voltage VSTH	ampl	Common mode input range	VHCM	Rangle = $20 \text{ k}\Omega$	0.95		2.1	V
High level voltage VFRCH	Ha	Input/output voltage gain	VGVH	Rangle = $20 \text{ k}\Omega$	24.5	27.5	30.5	dB
High level voltage VFRCH	i	High level voltage	VSTH		2.5		V _{CC} 1	V
High level voltage VFRCH	by F	Low level voltage	VSTL		-0.2		+0.7	V
High level voltage VFRCH	and	Input current	ISTIN	_			50	μΑ
Low level voltage VFRCL Low level voltage VFRCL Input current IFRCIN VFRC_C = 3V 20 30 μA	St	Leakage current	ISTLK	VSTBY_C = 0V			-30	μΑ
Input current IFRCIN VFRC_C = 3V 20 30 μA		High level voltage	VFRCH		2.5		V _{CC} 1	V
Leakage current IFRCLK VFRC_C = 0V -30	lid (Low level voltage	VFRCL		-0.2		+0.4	V
Leakage current IFRCLK VFRC_C = 0V -30	-R	Input current	IFRCIN			20	30	μΑ
Common mode input range VFGOH With internal pull-up VFGOH V	"	Leakage current	IFRCLK	VFRC_C = 0V			-30	μΑ
Input offset voltage	I			IH = 5 mA, VH(+) - VH(-)	0.75	0.85		V
Input bias current IbFG VFGIN+ = VFGIN- = 1.5V 500 nA Input bias current offset ΔIbFG VFGIN+ = VFGIN- = 1.5V -100 +100 nA Common mode input range VFGCM 1.2 2.5 V High level output voltage VFGOH With internal pull-up 2.8 V Low level output voltage VFGOL With internal pull-up 0.2 V Voltage gain VGFG Note 1 Design target value 100 dB	>	` ' ' '	VH(-)	IH = 5 mA	0.81	0.88	0.95	V
Input bias current offset \(\Delta \text{IbFG} \) VFGIN+ = VFGIN- = 1.5V -100 +100 nA		Input offset voltage	VFGOFF		-3		+3	mV
Voltage gain VGFG Note 1 Design target value 100 dB	_	1 .		VFGIN+ = VFGIN- = 1.5V			500	nA
Voltage gain VGFG Note 1 Design target value 100 dB	ato	Input bias current offset	ΔlbFG	VFGIN+ = VFGIN- = 1.5V	-100		+100	nA
Voltage gain VGFG Note 1 Design target value 100 dB	par		VFGCM		1.2		2.5	V
Voltage gain VGFG Note 1 Design target value 100 dB	mos		VFGOH		2.8			V
Voltage gain VGFG Note 1 Design target value 100 dB	ဗ္						0.2	V
Output current (Sink) IFGOs At output pin "L" 5 mA	"					100		dB
		Output current (Sink)	IFGOs	At output pin "L"			5	mA

Note 1: Design target value, not measured

Note 2: The overlap amount specification is taken as the measurement specification.

Cylinder Motor Driver Block at Ta = 25 °C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_S = 3V

Dutput idle current 4 ICC2Q VSTBY D = VSTBY_C = 0V 100 μA Dutput idle current 5 IS(D)Q VSTBY D = VSTBY_C = 0V 100 300 μA Dutput saturation voltage, upper side 1 VOU1 IO = 0.1A RF = 0.25Ω 0.3 0.5 V Dutput saturation voltage, lower side 1 VOD1 IO = 0.1A RF = 0.25Ω 0.3 0.5 V Dutput saturation voltage, lower side 2 VOU2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V DOMPhotomore in the voltage v					Ratings		
Dutput idle current 4 ICC2Q VSTBY D = VSTBY_C = 0V 100 μA Dutput idle current 5 IS(D)Q VSTBY D = VSTBY_C = 0V 100 300 μA Dutput saturation voltage, upper side 1 VOU1 IO = 0.1A RF = 0.25Ω 0.3 0.5 V Dutput saturation voltage, lower side 1 VOD1 IO = 0.1A RF = 0.25Ω 0.3 0.5 V Dutput saturation voltage, lower side 2 VOU2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 V DOMPhotomore reside 2 VOD2 IO = 0.4A, VS = 3V RF = 0.25Ω 0.5	Parameter	Symbol	Conditions	min	typ	max	Unit
Dutput idle current 5 $IS(D)Q$ $VSTBY D = VSTBY_C = 0V$ 100 300 μA Dutput saturation voltage, upper side 1 $VOU1$ $IO = 0.1A$ $RF = 0.25\Omega$ 0.3 0.5 V Dutput saturation voltage, lower side 1 $VOD1$ $IO = 0.1A$ $RF = 0.25\Omega$ 0.3 0.5 V Dutput saturation voltage, upper side 2 $VOU2$ $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage, lower side 2 $VOD2$ $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage, lower side 2 $VOD2$ $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V DOD4 Diput saturation voltage, lower side 2 $VOD2$ $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V DOD5 Diput saturation voltage input voltage range VIC 0.7 VCC^{-1}	Power supply current 4	ICC2	IO = 76 mA VSTBY_D = 3V VSTBY_C = 0V		0.75	2.5	mA
Dutput saturation voltage, upper side 1 VOU1 $IO = 0.1A$ $RF = 0.25\Omega$ 0.3 0.5 V Dutput saturation voltage, lower side 1 VOD1 $IO = 0.1A$ $RF = 0.25\Omega$ 0.3 0.5 V Dutput saturation voltage, upper side 2 VOU2 $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 $IO = 0.4A$, $VS = 3V$ $RF = 0.25\Omega$ 0.5 0.8 V Dutput saturation voltage range VIC 0.3 $V_{CC}^2 - 0.9$ V Dutput saturation voltage range VIC 0.3 $V_{CC}^2 - 0.9$ V Dutput saturation voltage range VIC 0.3 $V_{CC}^2 - 0.9$ V Dutput saturation voltage range VIC 0.3 $V_{CC}^2 - 0.9$ V Dutput saturation voltage VSTBYH 2 VSTBYH 2 VSTBYH 2 VSTBYH 2 VSTBYH 2 VSTBYH 2 VSTBYH 3 VOTBYH 3	Output idle current 4	ICC2Q	VSTBY D = VSTBY_C = 0V			100	μΑ
Dutput saturation voltage, lower side 1 VOD1 IO = $0.1A$ RF = 0.25Ω 0.3 0.5 V Dutput saturation voltage, upper side 2 VOU2 IO = $0.4A$, VS = $3V$ RF = 0.25Ω 0.5 0.8 V Dutput saturation voltage, lower side 2 VOD2 IO = $0.4A$, VS = $3V$ RF = 0.25Ω 0.5 0.8 V DOM pin common mode input voltage range VIC 0.3 V _{CC} ² -0.9 V Standby pin High level voltage VSTBYH 2 VSTBYH 2 VSTBYH 2 VSTBYL 0-0.2 0.7 V Standby pin Input current ISTBYH VSTBY_D = $3V$ 50 μ A Standby pin leakage current ISTBYH VSTBY_D = 0 V VSTBY_D	Output idle current 5	IS(D)Q	VSTBY D = VSTBY_C = 0V		100	300	μΑ
Output saturation voltage, upper side 2VOU2IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 VOutput saturation voltage, lower side 2VOD2IO = 0.4A, VS = 3V RF = 0.25Ω 0.5 0.8 VCOM pin common mode input voltage rangeVIC 0.3 $V_{CC}^{2}-0.9$ VStandby pin High level voltageVSTBYH2 V_{CC}^{2} VStandby pin Low level voltageVSTBYL -0.2 $+0.7$ VStandby pin input currentISTBYHVSTBY_D = 3V 50 μ AStandby pin leakage currentISTBYLVSTBY_D = 0V -10 μ AFRC pin High level voltageVFRCH2 V_{CC}^{1} VFRC pin input currentIFRCIVFRC_D = 3V -0.2 $+0.7$ VFRC pin leakage currentIFRCIVFRC_D = 3V -0.2 $+0.7$ VFRC pin leakage currentIFRCLVFRC_D = 0V -10 μ ASlope pin sink current ratioRSOURCEICSLP1SOURCE/ICSLP2SOURCE -15 $+15$ %Slope pin sink current ratioRSINKICSLP1SINK/ICSLP2SINK -15 $+15$ %CSLP1 source/sink current ratioRCSLP1ICSLP1SOURCE/ICSLP2SINK -35 $+15$ %CSLP2 source/sink current ratioRCSLP2ICSLP2SOURCE/ICSLP2SINK -35 $+15$ %Startup frequencyFreqCosc = 0.1 μ F, OSC frequency (Target)11.5HzPhase delay-widthDwidth(Target)11.5HzSELCSLP pin High level voltag	Output saturation voltage, upper side 1	VOU1	$IO = 0.1A$ RF = 0.25Ω		0.3	0.5	V
Output saturation voltage, lower side 2 COM pin common mode input voltage range Standby pin High level voltageVOD2 VICIO = 0.4A, VS = 3V RF = 0.25Ω0.5 0.3 VCc2-0.9 VCc2-0.9 V V VCc1 V Standby pin High level voltage Standby pin Low level voltage VSTBYL Standby pin input current Standby pin input current ISTBYH VSTBYLD = 3V VSTBY_D = 3V0.5 2 3V 50 3V 3D	Output saturation voltage, lower side 1	VOD1	$IO = 0.1A$ RF = 0.25Ω		0.3	0.5	V
COM pin common mode input voltage range VIC 0.3 $V_{CC}^2-0.9$ V 0.3 $V_{CC}^2-0.9$ V 0.3	Output saturation voltage, upper side 2	VOU2	$IO = 0.4A, VS = 3V RF = 0.25\Omega$		0.5	0.8	V
Standby pin High level voltage VSTBYH 2 V _{CC} 1 V	Output saturation voltage, lower side 2	VOD2	$IO = 0.4A, VS = 3V RF = 0.25\Omega$		0.5	0.8	V
Standby pin Low level voltage VSTBYL -0.2 +0.7 V	COM pin common mode input voltage range	VIC		0.3		V _{CC} 2-0.9	V
Standby pin Low level voltage VSTBYL	Standby pin High level voltage	VSTBYH		2		V _{CC} 1	V
Standby pin leakage current Standby pin leakage current ISTBYL VSTBY_D = 0V -10 μ A FRC pin High level voltage VFRCH 2 V _{CC} 1 V FRC pin Low level voltage VFRCL FRC pin input current IFRCI VFRC_D = 3V FRC pin leakage current IFRCL VFRC_D = 0V -10 μ A FRC pin leakage current IFRCL VFRC_D = 0V -10 μ A Slope pin source current ratio RSOURCE ICSLP1SOURCE/ICSLP2SOURCE -15 +15 % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % Startup frequency Freq Cosc = 0.1 μF, OSC frequency (Target) Thase delay-width Dwidth Target) Thase delay-width SELCSLP pin High level voltage VSELL CSLCSLP = 3V 50 μ A	Standby pin Low level voltage	VSTBYL		-0.2			V
FRC pin High level voltage VFRCH 2 V_{CC}^{-1} V FRC pin Low level voltage VFRCL -0.2 +0.7 V FRC pin input current IFRCI VFRC_D = 3V 50 μ A FRC pin leakage current IFRCL VFRC_D = 0V -10 μ A FRC pin leakage current RSOURCE ICSLP1SOURCE/ICSLP2SOURCE -15 +15 % Slope pin source current ratio RSOURCE ICSLP1SINK/ICSLP2SINK -15 +15 % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP1SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP2SOURCE/ICSLP2SINK -35 +15 % CSLP	Standby pin input current	ISTBYH	VSTBY_D = 3V			50	μΑ
FRC pin Low level voltage VFRCL -0.2 $+0.7$ V FRC pin input current IFRCI VFRC_D = 3V $+0.7$ V FRC pin leakage current IFRCL VFRC_D = 0V -10 μA FRC pin leakage current ratio RSOURCE ICSLP1SOURCE/ICSLP2SOURCE -15 $+15$ % Slope pin sink current ratio RSINK ICSLP1SINK/ICSLP2SINK -15 $+15$ % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % Startup frequency Freq Cosc = 0.1 μ F, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 VCC1 V SELCSLP pin Low level voltage VSELL -0.2 $+0.7$ V SELCSLP pin input current ISELH VSELCSLP = 3V	Standby pin leakage current	ISTBYL	VSTBY_D = 0V	-10			μΑ
FRC pin Low level voltage VFRCL -0.2 $+0.7$ V FRC pin input current IFRCI VFRC_D = 3V $+0.7$ V FRC pin leakage current IFRCL VFRC_D = 0V $+0.7$ V ERC pin leakage current ratio RSOURCE ICSLP1SOURCE/ICSLP2SOURCE -15 $+15$ % Slope pin sink current ratio RSINK ICSLP1SINK/ICSLP2SINK -15 $+15$ % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP1SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % CSLP2 pin High level voltage VSELH -30 -30 deg SELCSLP pin High level voltage VSELH -30 -3	FRC pin High level voltage	VFRCH		2		V _{CC} 1	V
FRC pin leakage current IFRCL VFRC_D = 0V -10 μA Slope pin source current ratio RSOURCE ICSLP1SOURCE/ICSLP2SOURCE -15 $+15$ % Slope pin sink current ratio RSINK ICSLP1SINK/ICSLP2SINK -15 $+15$ % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 $+15$ % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 $+15$ % Startup frequency Freq Cosc = 0.1 μ F, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 V_{CC} 1 V SELCSLP pin Low level voltage VSELL -0.2 $+0.7$ V SELCSLP pin input current ISELH VSELCSLP = 3V	FRC pin Low level voltage	VFRCL		-0.2			V
Slope pin source current ratioRSOURCEICSLP1SOURCE/ICSLP2SOURCE -15 $+15$ %Slope pin sink current ratioRSINKICSLP1SINK/ICSLP2SINK -15 $+15$ %CSLP1 source/sink current ratioRCSLP1ICSLP1SOURCE/ICSLP1SINK -35 $+15$ %CSLP2 source/sink current ratioRCSLP2ICSLP2SOURCE/ICSLP2SINK -35 $+15$ %Startup frequencyFreqCosc = 0.1 μF, OSC frequency (Target)11.5HzPhase delay-widthDwidth(Target)30degSELCSLP pin High level voltageVSELH2 $V_{CC}1$ VSELCSLP pin Low level voltageVSELL -0.2 $+0.7$ VSELCSLP pin input currentISELHVSELCSLP = 3V50 μ A	FRC pin input current	IFRCI	VFRC_D = 3V			50	μΑ
Slope pin sink current ratio RSINK ICSLP1SINK/ICSLP2SINK -15 +15 % CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % Startup frequency Freq Cosc = 0.1 μF, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 $V_{CC}1$ V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = 3V 50 μ A	FRC pin leakage current	IFRCL	VFRC_D = 0V	-10			μΑ
CSLP1 source/sink current ratio RCSLP1 ICSLP1SOURCE/ICSLP1SINK -35 +15 % CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % Startup frequency Freq Cosc = $0.1 \mu\text{F}$, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 VCC1 V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = $3V$ 50 μA	Slope pin source current ratio	RSOURCE	ICSLP1SOURCE/ICSLP2SOURCE	-15		+15	%
CSLP2 source/sink current ratio RCSLP2 ICSLP2SOURCE/ICSLP2SINK -35 +15 % Startup frequency Freq Cosc = $0.1 \mu F$, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 V _{CC} 1 V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = $3V$ 50 μA	Slope pin sink current ratio	RSINK	ICSLP1SINK/ICSLP2SINK	-15		+15	%
Startup frequency Freq Cosc = $0.1 \mu\text{F}$, OSC frequency (Target) 11.5 Hz Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 V_{CC}^{-1} V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = $3V$ 50 μA	CSLP1 source/sink current ratio	RCSLP1	ICSLP1SOURCE/ICSLP1SINK	-35		+15	%
Phase delay-width Dwidth (Target) 30 deg SELCSLP pin High level voltage VSELH 2 V _{CC} 1 V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = 3V 50 μA	CSLP2 source/sink current ratio	RCSLP2	ICSLP2SOURCE/ICSLP2SINK	-35		+15	%
SELCSLP pin High level voltage VSELH 2 V _{CC} 1 V SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = 3V 50 μA	Startup frequency	Freq	Cosc = 0.1 μF, OSC frequency (Target)		11.5		Hz
SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = 3V 50 μA	Phase delay-width	Dwidth	(Target)		30		deg
SELCSLP pin Low level voltage VSELL -0.2 +0.7 V SELCSLP pin input current ISELH VSELCSLP = 3V 50 μA	SELCSLP pin High level voltage	CSLP pin High level voltage VSELH		2		V _{CC} 1	V
···	SELCSLP pin Low level voltage	CSLP pin Low level voltage VSELL		-0.2			V
SELCSLP pin leakage current ISELL VSELCSLP = 0V -10 μA	SELCSLP pin input current	LCSLP pin input current ISELH VSELCSLP = 3V				50	μΑ
	SELCSLP pin leakage current	ISELL	VSELCSLP = 0V	-10			μΑ

Note) Items shown to be "Target" are not measured.

FG/PG Amplifier Block at Ta = 25°C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_{S} = 3V

Development	0	O and the area	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
[FG amplifier]	•		'		'	
Input offset voltage	VIO	(Target)		±1	±5	mA
Input bias current	IBIN-	(Target)			250	nA
Common mode input voltage range	VICOM	(Target)	1		2	V
Open loop gain	GVFG	f = 1 kHz (Target)		55		dB
Output ON voltage	VOL	At IO = 10 μA			0.4	V
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1-0.5			V
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV
Reference voltage	VREF		1.15	1.30	1.45	V
[PG amplifier]				'	'	
Input offset voltage	VIO	(Target)		±1	±5	mV
Input bias current	IBIN-	(Target)			250	nA
Common mode input voltage range	VICOM	(Target)	1		2	V
Open loop gain	GVPG	f = 1 kHz (Target)		55		dB
Output ON voltage	VOL	At IO = 10 μA			0.4	V
Output OFF voltage	VOH	At IO = 10 μA	V _{CC} 1-0.5			V
Schmitt amplifier hysteresis width	VSHIS	(Target)		50		mV

Note) Items shown to be "Target" are not measured.

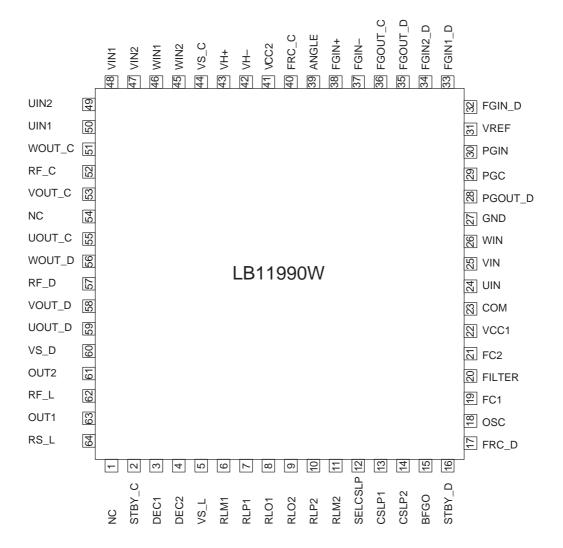
Loading Motor Driver Block at Ta = 25°C, $V_{CC}1$ = 3V, $V_{CC}2$ = 4.75V, V_S = 3V

Parameter Symbol		Conditions		Ratings		Unit		
Farameter	Symbol	Conditions	min	typ	max	Offic		
VCC1 power supply current 1	ICC11	VSTBY_C = VSTBY_D = 0V (standby)		2.1	4	mA		
VCC1 power supply current 2	ICC12	VSTBY_C = VSTBY_D = 0V (forward/reverse)		14	19	mA		
VCC1 power supply current 3	ICC13	VSTBY_C = VSTBY_D = 0V (at braking)		10	14	mA		
VCC2 power supply current 1	ICC21	VSTBY_C, D = 0V (standby (V _{CC} 1 = OPEN))			100	μΑ		
VCC2 power supply current 2	ICC22	VSTBY_C, D = 0V (standby $(V_{CC}1 = 3.0V)$)			100	μΑ		
VCC2 power supply current 3	ICC23	VSTBY_C, D = 0V (forward/reverse)		15.0	25	mA		
VS L power supply current	I VS L	VSTBY_C, D = 0V (standby)			20	μΑ		
[Logic input (DEC1 pin, DEC2 pin)]								
High level input voltage	VINH	V _{CC} 1 = 2.7 to 4.0V	2.0		V _{CC} 1	V		
High level flowing current	IINH	VIN = 3.0V		41	65	μΑ		
Low level input voltage	VINL	V _{CC} 1 = 2.7 to 4.0V	-0.2		0.6	V		
Low level flowing current	IINL	VIN = 0.6V		5	10	μΑ		
[Loading motor driver]								
Output saturation voltage 1	VOH	IO = 200 mA (upper/lower composition)		0.2	0.3	V		
Output saturation voltage 2	VSHIS	IO = 400 mA (upper/lower composition)		0.4	0.6	V		
[Reel FG amplifier]								
Input offset voltage	VIO			±1	±5	mV		
Input bias current	IB				1	μΑ		
Common mode input voltage range	VICM		1		2	V		
Open loop gain	GV1			55		dB		
[Thermal shutdown circuit]	Thermal shutdown circuit]							
TSD operating temperature	T-TSD	(Target)		180		°C		
TSD temperature hysteresis width	ΔTSD	(Target)		15		°C		

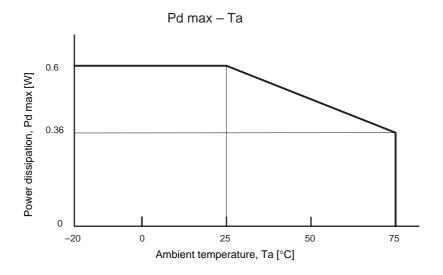
Note) Items shown to be "Target" are not measured.

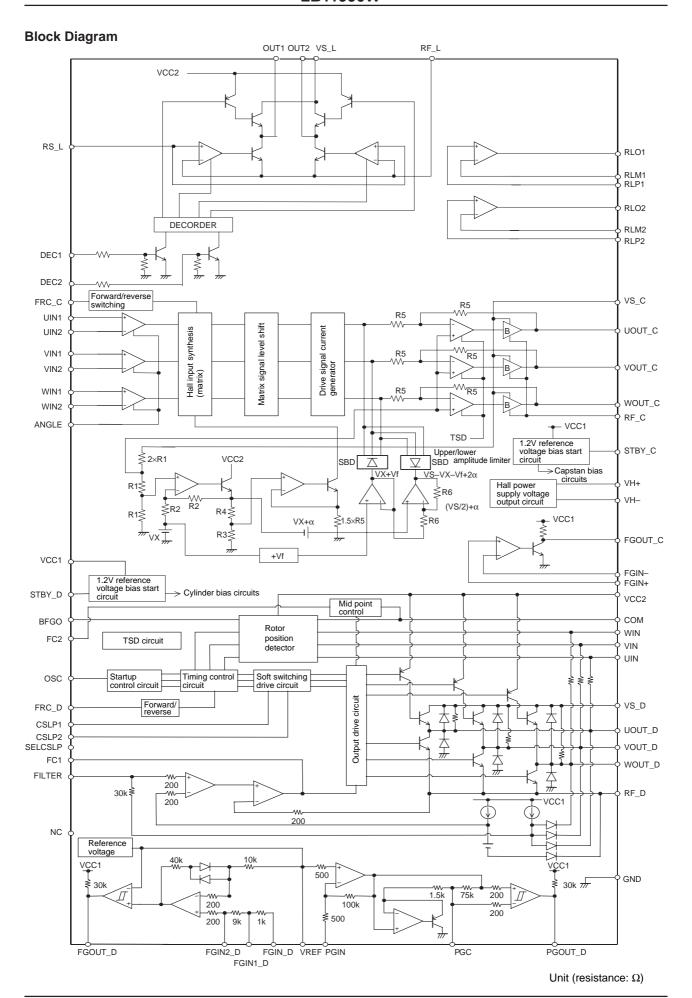
Truth Table Capstan Motor Truth Table

			Hall input		
	Source -> Sink	U	V	W	FRC
4	V -> W			1	Н
1	W -> V	Н	Н	'	L
2	U -> W	Н	1	1	Н
	W -> U				L
3	U -> V	Н	ı		Н
3	V -> U			H	L
4	W -> V		ı		Н
4	V -> W	L	L	H	L
-	W -> U		- 11		Н
5	U -> W	L	Н	H	L
6	V -> U		- 11		Н
6	U -> V	L	Н	L	L

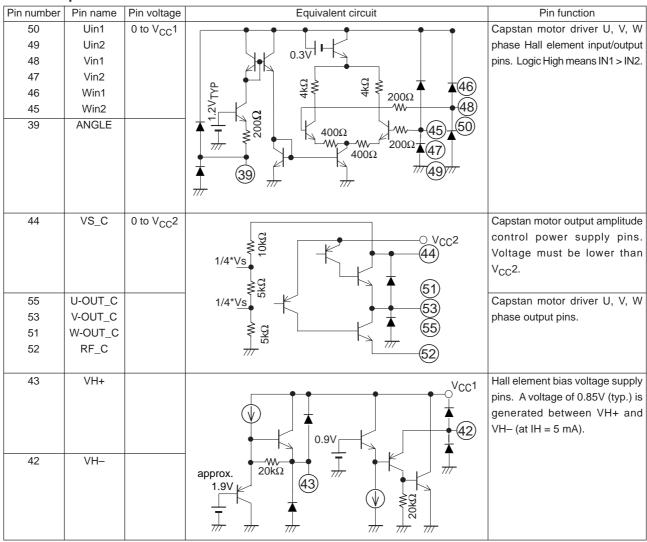

Note: "H" for FR means a voltage of 2.50V or above. "L" for FR means a voltage of 0.4V or below. (Vcc1 = 3V)

Note: At the Hall input, "H" means that the potential of the (+) terminal for each phase input is at least 0.02V higher than the (–) terminal. "L" means that the potential of the (+) terminal for each phase input is at least 0.02V lower than the (–) terminal.


Loading Motor Truth Table


Inp	out	Out	Mode	
DEC1	DEC2	OUT1	OUT2	
L	L	Off	Off	Standby
Н	L	Н	L	Forward
L	Н	L	Н	Reverse
Н	Н	L	L	Brake

Pin Assignment



Top view

Pin Description

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
37	FGIN-	0 to V _{CC} 1	OVcc1	FG comparator inverted input pin. No internal bias is applied.
38	FGIN+		37 w 38 36	FG comparator non-inverted input pin. No internal bias is applied.
36	FGOUT_C		20kg // // // // // // // // // // // // //	FG comparator output pin. Internal load impedance is 20 $k\Omega.$
40	FRC_C	0 to V _{CC} 1	2 Vcc1	Capstan motor forward/reverse select pin. The voltage at this pin (with hysteresis) selects forward or reverse rotation.
2	STBY_C		40	This pin selects bias supply to capstan circuits other than FG comparator. Setting the pin to Low cuts off the bias supply. Capstan motor standby pin.
35	FGOUT_D		V _{CC} 1 Cyos 35	FG amplifier output pin.
18	osc		V _{CC1} V _T V _T V _T V _T V _T V _T V _T V _T	Pin for connecting triangular wave oscillator capacitor. Serves for forced startup waveform generation.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
19	FC1		Vcc1 (10k0) (10k	Frequency characteristics pin. Connecting a capacitor between this pin and ground serves to prevent closed-loop oscillation in the current control circuitry.
20	FILTER		V _{CC} 1 V _{CC} 1 V _{CC} 1 V _T S ₂ V	Connecting a capacitor between this pin and ground activates the coil output saturation prevention function. In this condition, the VS pin is controlled for motor voltage control. By adjusting the external capacitor, torque ripple compensation can be varied.
28	PGOUT D		V _{CC} 1 Cyoc Ambre 28	PG amplifier output pin.
29	PGC		V _{CC} 1 V _{CC} 1	PG amplifier peak hold capacitor connection pin.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
30	PGIN	max2.0V min1.0V (At V _{CC} = 3V)	30 V _{CC} 1 500Ω W 1.3V	PG amplifier input pin. Connect PG coil between this pin and VREF.
31	VREF		31 V _{CC} 1 1.3V	Internal 1.3V reference voltage. Used as reference voltage for FG and PG amplifiers.
32	FGIN_D	max2.0V min1.0V (At $V_{CC}1 =$	V _{CC} 1	FG amplifier input pin. Connect FG coil between this pin and VREF.
33	FGIN1_D	3V)	500Ω 1.3V	FG amplifier input signal noise filter capacitor connection.
34	FGIN2_D		34 33 32	FG amplifier input signal noise filter capacitor connection.
16	STBY_D	0 to V _{CC} 1	100kΩ V _{CC} 1	When this pin is at 0.7V or lower or when it is open, only the FG/PG amplifier operates. In the motor drive state, the pin should be at 2V or higher. Drum motor standby pin.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
17	FRC_D	0 to V _{CC} 1	V _{CC} 1	Drum motor forward/reverse rotation select pin. Low: forward (-0.2V to 0.7V or open) High: reverse (2V to V _{CC} 1)
60	VS_D	0V to VCC2		Power supply pin for determining output amplitude by supplying drum motor voltage. Must be lower than VCC2 voltage.
41	V _{CC} 2	3.5V to 8.5V		Power supply pin for supplying source side predriver voltage and coil waveform detect comparator voltage. Common for loading, capstan, and drum motors.
22	V _{CC} 1	2.7V to 6V		Power supply pin for circuits except motor voltage, source side predriver voltage, and coil waveform detect comparator voltage. Common for loading, capstan, and drum motors.
13 14	CSLP1		V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 1 V _{CC} 1 V _C	Pins for connecting triangular wave oscillator capacitor. This triangular wave coil output performs waveform soft switching.
27	GND			Ground pin for all circuits except output.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
26	WIN		V _{CC} 1 —	Coil waveform detect comparator
24	UIN			input pins.
25	VIN		10µA	
			26 200Ω	
			(25)	
			200Ω	
			200Ω	
23	COM		<u> </u>	Motor coil midpoint input pin.
				Using this voltage as a reference,
				the coil voltage waveform is detected.
				detected.
			गीर भीर भीर भीर	
56	WOUT_D		140.5	U, V, W phase coil output pins.
59	UOUT_D		VS_D	
58	VOUT_D		_w	
			3.9Ω	
			90/98/99	
			3.9Ω Vcc1	
			3.932	Davis sastan deivas autout
57	RF_D			Drum motor driver output transistor ground. Constant
				current drive is performed by
				detecting the voltage at this pin.
			///-	detecting the reliage at time pini
21	FC2		V4	Output midpoint control.
			V _{CC} 1	Oscillation prevention capacitor
			+ * * *	connection pin.
			↑ └	
			2) g	
			10kB	
			★ →	
			$\frac{1}{1}$	
12	SELCSLP	0 to V _{CC} 1	1	When High, this pin sets CSLP
			V _{CC} 1 →	slant to 15 times the slant at Low.
				When $V_{CC}1 = 3.0V$
			100kO	2.0V or higher: High
			100kΩ = 100kΩ	0.7V or lower: Low
			g A	
			♦ \$100kg	

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
15	BFGO		Vcc1 White Solution is a series of the seri	Motor counter EMF voltage FG pulse pin. Outputs a pulse using W phase counter EMF voltage as FG. Connect to ground if not used.
5	VS_L	2.2 to V _{CC} 2		Loading motor power supply pin. Stabilize against noise in the same way as for VCC2.
62	RF_L		VS_L VS_L 62	Output transistor P–GND Output current can be detected for motor current control by inserting a resistor between Rf pin and ground.
63 61	OUT1 OUT2		VS_L 61 63 262	Loading motor driver output pins. Connect to loading motor.
6 7 11 10	RLM1 RLP1 RLM2 RLP2	0 to V _{CC} 1	6 10kΩ 7 10kΩ 7 100 100 100 100 100 100 100 100 100 1	L-FG amplifier input pins. RLM1 and RLM2 are negative input. RLP1 and RLP2 are positive input.

Pin number	Pin name	Pin voltage	Equivalent circuit	Pin function
8 9	RLO1 RLO2		8 9 9	R–FG amplifier output pins.
3 4	DEC1 DEC2	0 to V _{CC} 1	VCC1 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ 10kΩ	Loading motor input pins. When VCC1 = 3.0V 2.0V or higher: High 0.6V or lower: Low
64	RS_L	0 to V _{CC} 1 -1.5V	1kΩ Vcc1	Current limiter setting pin. Set voltage between RF pin and ground, for limiting current.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1999. Specifications and information herein are subject to change without notice.