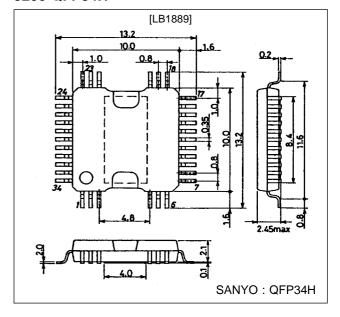


LB1889, 1889M, 1889D

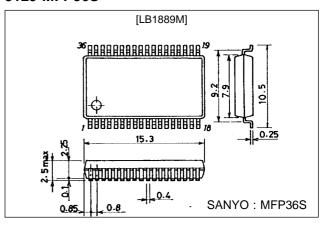
3-phase Brushless Motor Driver for VTR Capstans


Functions

- 3-phase full-wave current linear drive system
- Torque ripple correction circuit built in (variable compensation ratio)
- Current limiting circuit built in/with control characteristic gain switch
- Output stage upper/lower oversaturation prevention circuit built in (no external capacitor required)
- FG amplifier built in
- Thermal shutdown circuit built in

Package Dimensions

unit: mm


3206-QFP34H

3147A-DIP28HS

3129-MFP36S

Specifications

Absolute Maximum Ratings at Ta = 25 °C

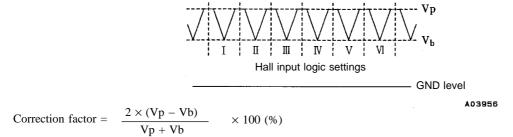
Parameter	Symbol	Conditions Rating:		Unit
	V _{CC} max		7	V
Maximum supply voltage	V _S max		24	V
Maximum output current	I _O max		1.3	Α
		Arbitrarily large heat sink LB1889	12.5	W
		Arbitrarily large heat sink LB1889D	15.0	W
Allowable power dissipation	Pd max	Independent IC LB1889	0.77	W
		Independent IC LB1889M	0.95	W
		Independent IC LB1889D	3.0	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	∘C

Allowable Operating Ranges at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _S		5 to 22	V
Supply Voltage	V _{CC}		4.5 to 5.5	V
Hall input amplitude	V _{HALL}	Between Hall inputs	±30 to ±80	mV _{0-P}
GSENSE input range	V _{GSENSE}	Relative to control system GND	-0.20 to +0.20	V

Electrical Characteristics at Ta = 25 $^{\circ}$ C, V_{CC} = 5 V, V_{S} = 15 V

Parameter	Symbol	Conditions	min	typ	max	Unit
V _{CC} supply current	Icc	$R_L = \infty$ (when stopped), $V_{CTL} = 0$ V, $V_{LIM} = 0$ V		12	18	mΑ
[Output]						
Output saturation voltage	V _{Osat} 1	$I_O = 500$ mA, Rf = 0.5 Ω , Sink + Source $V_{CTL} = V_{LIM} = 5$ V (with saturation prevention)		2.1	2.6	V
Output Saturation Voltage	V _{Osat} 2	I_O = 1.0 A, Rf = 0.5 Ω, Sink + Source V_{CTL} = V_{LIM} = 5 V (with saturation prevention)		2.6	3.5	V
Output leakage current	loleak				1.0	mΑ
[FR]						
FR pin input threshold voltage	V _{FSR}		2.25	2.50	2.75	V
FR pin input bias current	lb (FSR)		-5.0			μΑ
[Control]						
CTLREF pin voltage	V _{CREF}		2.37	2.50	2.63	V
CTLREF pin input range	V _{CREF} IN		1.70		3.50	V
CTL pin input bias current	lb (CTL)	V _{CTL} = 5 V, CTLREF : Open			8.0	μΑ
CTL pin control start voltage	V _{CTL} (ST)	With Rf = 0.5 Ω , V _{LIM} = 5 V, I _O \geq 10 mA, Hall input logic fixed, (u, v, w = H, H, L)	2.20	2.35	2.50	V
CTL pin control switch voltage	V _{CTL} (ST2)	Rf = 0.5Ω , $V_{LIM} = 5 V$	3.00	3.15	3.30	V
CTL pin control Gm1	Gm1 (CTL)	With Rf = 0.5 Ω , ΔI_O = 200 mA, Hall input logic fixed, (u, v, w = H, H, L)	0.52	0.65	0.78	A/V
CTL pin control Gm2	Gm2 (CTL)	With Rf = 0.5 Ω , ΔV_{CTL} = 200 mV, Hall input logic fixed, (u, v, w = H, H, L)	1.20	1.50	1.80	A/V
[Current Limit]						
LIM current limit offset voltage	Voff (LIM)	With Rf = 0.5 Ω , V _{CTL} = 5 V, I _O \geq 10 mA, Hall input logic fixed, (u, v, w = H, H, L)	140	200	260	mV
LIM pin input bias current	lb (LIM)	With V _{CTL} = 5 V, CTLREF : Open, V _{LIM} = 0 V	-2.5			μΑ
LIM pin current limit level	I lim	With Rf = 0.5 Ω , V _{CTL} = 5 V, V _{LIM} = 2.06 V, Hall input logic fixed, (u, v, w = H, H, L)	830	900	970	mA
[Hall Amplifier]	•					
Hall amplifier input offset voltage	Voff (HALL)		-6		+6	mV
Hall amplifier input bias current	lb (HALL)			1.0	3.0	μA
Hall amplifier common-mode input voltage	Vcm (HALL)		1.3		3.3	V


Continued on next page.

Continued from preceding page.

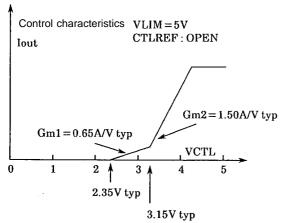
Parameter	Symbol	Conditions		typ	max	Unit	
[TRC]							
Torque ripple correction factor	T _{RC}	At bottom and peak in Rf waveform at $I_O = 200$ mA (RF = 0.5 Ω , ADJ-OPEN) Note 2		9		%	
ADJ pin voltage	Vadj		2.37	2.50	2.63	V	
[FG Amplifier]							
FG amplifier input offset voltage	Voff (FG)		-8		+8	mV	
FG amplifier input bias current	lb (FG)					nA	
FG amplifier output saturation voltage	V _{Osat} (FG)	At internal pull-up resistor load on sink side			0.5	V	
FG amplifier common-mode input voltage	V _{CM} (FG)				4.0	V	
[Saturation]							
Saturation prevention circuit lower set voltage	V _{Osat} (DET)	Voltage between each OUT and Rf at I $_{O}$ = 10 mA, Rf = 0.5 $\Omega,\ V_{CTL}$ = V_{LIM} = 5 V		0.25	0.325	V	
[TSD]							
TSD operation temperature	T-TSD	(Design target) Note 1		180		۰C	
TSD temperature hysteresis width	ΔTSD	(Design target) Note 1		20		°C	

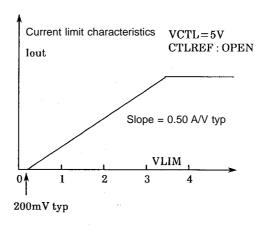
Note 1: No measurements are performed for any values listed in the conditions column as design targets.

Note 2: The torque ripple correction factor is calculated using the Rf voltage waveform as follows.

Truth Table & Control Function

	Course Cink	F	Hall input		
	Source → Sink	U	V	W	FR
1	$V \rightarrow W$	Н	Н	L	Н
'	$W \rightarrow V$	П			L
2	$U \to W$	н	L	L	Н
	$W\toU$	П			L
3	$U \to V$	Н	L	Н	Н
3	$V \rightarrow U$	- ' '			L
4	$W \to V$		L	Н	Н
4	$V \rightarrow W$	_	L	- ' '	L
5	$W \rightarrow U$	ı	Н	Н	Н
3	$U \to W$	_	'1	17	L
6	$V \rightarrow U$	1	Н	ı	Н
	$U \to V$	_		-	L

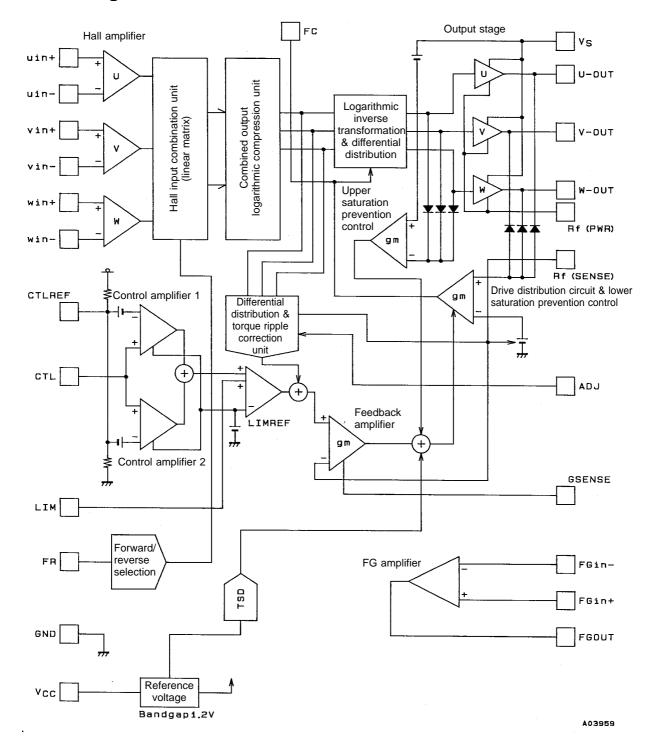

Note: "H" in the FR column represents a voltage of 2.75 V or more; "L" represents a voltage of 2.25 V or less. (At V_{CC} = 5 V)


Note: "H" in the Hall input columns represents a state in which "+" has a potential which is higher by 0.01 V or more than that of the "-" phase inputs.

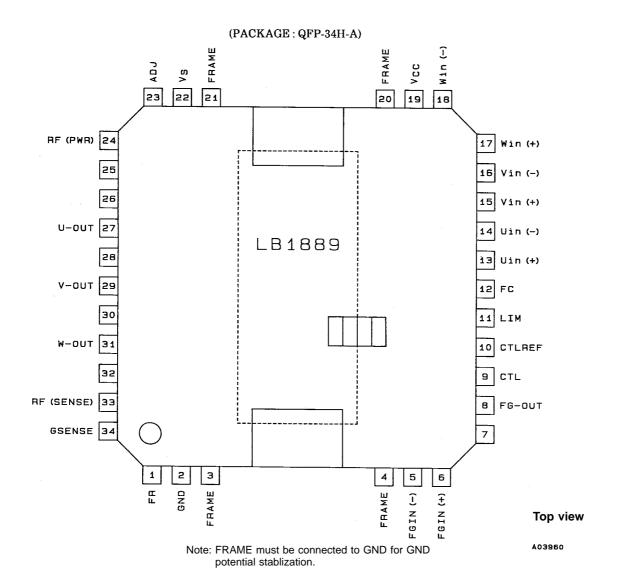
Conversely, "L" represents a state in which "+" has a potential which is lower by 0.01 V or more than that of the "-" phase input.

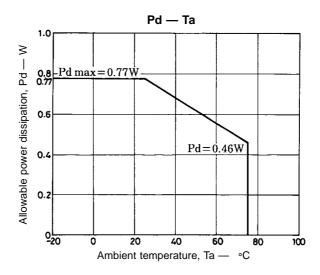
Note: Since 180° energized system is used as the drive system, other phases than the sink and source phases are turned off.

Control Function & Current Limit Function

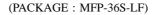


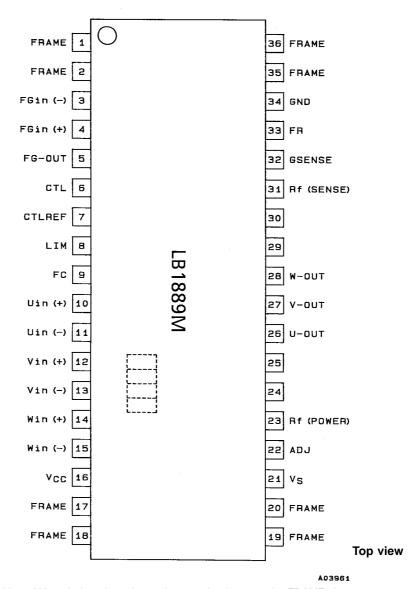
Pin Functions

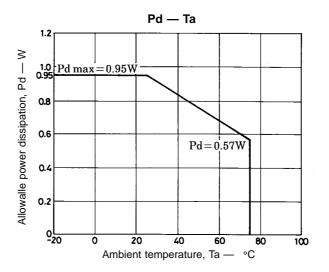

The pin number in () is for MFP, that in < > is for DIP, and other than these is for QFP.


Pin name	Pin No.	Function
FR	1 (33) <26>	Forward/reverse select pin. The pin voltage selects forward/reverse. (Vth = 2.5 V typ at V_{CC} = 5 V)
GND	2 (34) <27>	GND for other than output transistor. Minimum potential of output transistor is at Rf pin.
FGin (–)	5 (3) <28>	Input pin when FG amplifier is used with inverted input. Feedback resistor is connected between this pin and FG-OUT.
FGin (+)	6 (4) <1>	Noninverting input pin when FG amplifier is used with differential input. Internal bias is not applied.
FG-OUT	8 (5) <3>	FG amplifier output pin. Resistive load provided internally.
CTL	9 (6) <4>	Speed control pin. Control is exercised by constant-current drive with current feedback applied from Rf. Gm = 0.65 A/V & 1.50 A/V typ at Rf = 0.5 Ω
CTLREF	10 (7) <5>	Control reference voltage pin. The voltage is set internally to approx. $V_{CC}/2$ but this can be varied by applying voltage through a low impedance (input impedance = approx. $2.5 \text{ k}\Omega$).
LIM	11 (8) <6>	Current limiting function control pin. The output current is varied linearly by this pin voltage; slope = 0.5 A/V typ at Rf = 0.5 Ω .
FC	12 (9) <7>	Speed control loop frequency characteristic correction pin
Uin ⁺ , Uin ⁻ Vin ⁺ , Vin ⁻ Win ⁺ , Win ⁻	13, 14 (10, 11) <8, 9> 15, 16 (12, 13) <10, 11> 17, 18 (14, 15) <12, 13>	U-phase Hall device input pin; logic "H" represents IN+ > IN V-phase Hall device input pin; logic "H" represents IN+ > IN W-phase Hall device input pin; logic "H" represents IN+ > IN
V _{CC}	19 (16) <14>	Power supply pin for supplying power to all circuits except output section in IC; this voltage must be stabilized so as to eliminate ripple and noise.
Vs	22 (21) <15>	Output selection power supply pin
ADJ	23 (22) <16>	Pin for external adjustment of torque ripple correction factor. When this factor is to be adjusted, a voltage is externally applied to the ADJ pin through a low impedance. If the voltage applied is increased, the factor drops; conversely, if it is reduced, the factor rises. The factor varies between 0 and 2 times that of the open state. (The voltage is set inside to approx. $V_{\rm CC}/2$ internally, and the input impedance is approx. $5{\rm k}\Omega$.)
Rf (PWR) Rf (SNS)	24 (23) <17> 33 (31) <24>	Output current detection pin. Current feedback is applied to the control section by connecting Rf between this pin and GND. The lower oversaturation prevention circuit and torque ripple correction circuit are activated in accordance with this pin voltage. Since the oversaturation prevention level is set with this voltage, the lower oversaturation prevention effect may deteriorate in the high current range if the Rf value is reduced to an extremely low level. The PWR and SENSE pins must always be connected.
Uout Vout Wout	27 (26) <21> 29 (27) <22> 31 (28) <23>	U-phase output pin V-phase output pin (Built-in spark killer diode) W-phase output pin
GSENSE	34 (32) <25>	GND sensing pin. By connecting this pin to the neighboring GND on the Rf resistor side of the motor GND wire which contains Rf, the effect that GND common impedance exerts on Rf can be eliminated. (This pin must not be left open.)

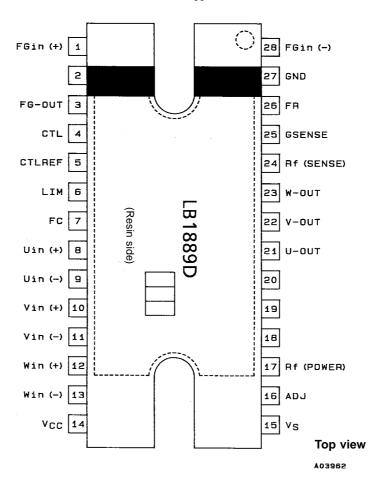
Block Diagram

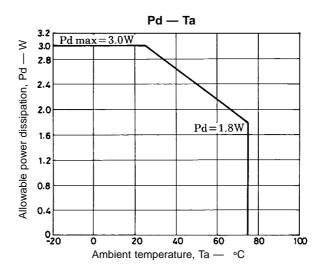


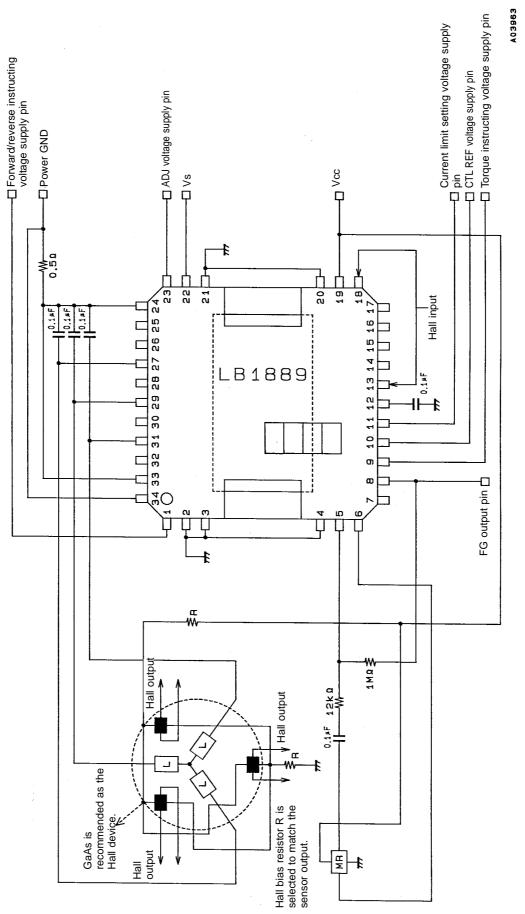

Pin Assignment [LB1889]



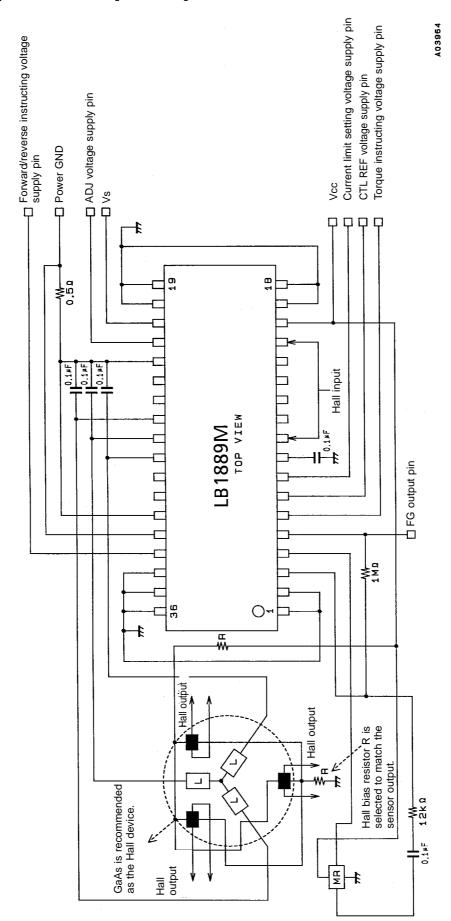
Pin Assignment [LB1889M]



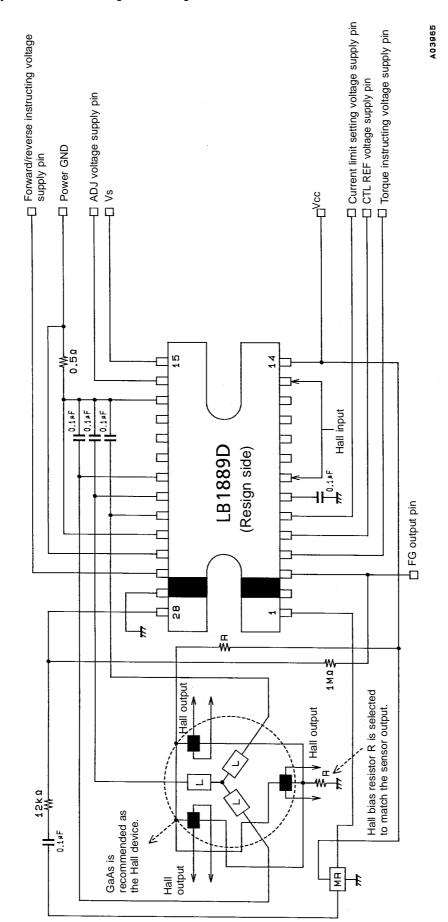

Note: Although there is no internal connection between the FRAME pin and GND, FRAME must be connected to GND externally for GND potential stabilization.


Pin Assignment [LB1889D]

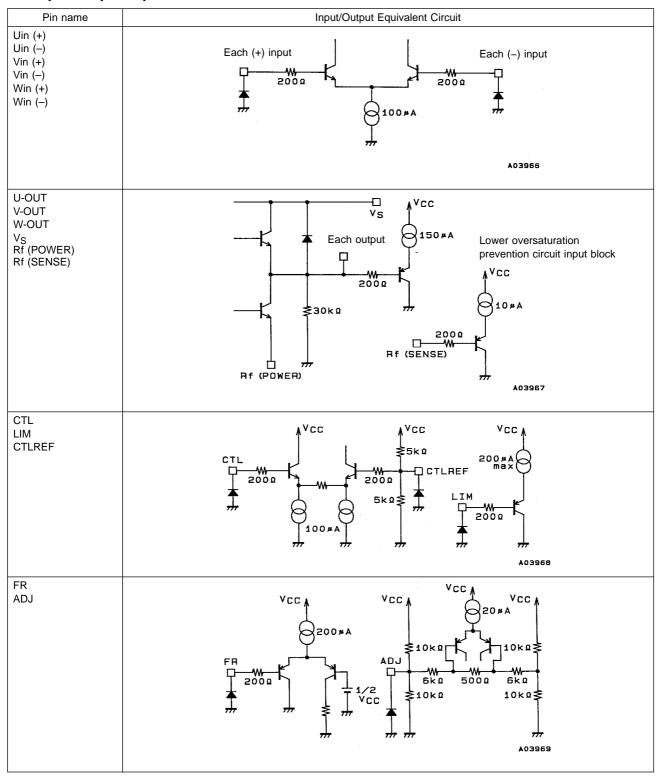
DIP-28HS bent opposite



Sample Application Circuit [LB1889]


Note: The constants provided in this sample application circuit are provided by way of example and are not intended to guarantee the characteristics.

Sample Application Circuit [LB1889M]


Note: The constants provided in this sample application circuit are provided by way of example and are not intended to guarantee the characteristics.

Sample Application Circuit [LB1889D]

Note: The constants provided in this sample application circuit are provided by way of example and are not intended to guarantee the characteristics.

Pin Input/Output Equivalent Circuit

Continued on next page.

Continued from preceding page.

Pin name	Input/Output Equivalent Circuit
FGin (-) FGin (+)	VCC 5#Α FGin (+) 2000 3000 A03970
FGOUT FC	VCC VCC VCC VCC VCC VCC VCC VCC AVCC AV

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.