CMOS IC

Overview

The LC4608C is a driver for ink-jet printer heads with 64bit output. It converts 4-bit parallel input into 16 -step gray scale output by regulating the transmission gate's output time.

Features

This 64-bit CMOS driver with 16 -step gray scale output and high withstand voltage offers the following features.

- Built-in 64×4-bit static shift register
- Built-in 64×4-bit static latch
- 16-step gray scale output from 4-bit parallel input
- Built-in 64×2-channel transmission gate output
- Transmission gate on resistance of 60Ω (typ.) 100Ω (max)
- CMOS process with high withstand voltage (42 V)

Specifications

Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (logic)	V_{DD}		-0.5 to +7.0	V
Supply voltage (high withstand voltage circuits)	V_{H}		-0.5 to +42	V
Driver output breakdown voltage	$\mathrm{BV}_{\mathrm{DO}}$		-0.5 to +42	V
Driver output current	I_{DO}	Peak value within allowable operating range	± 400	mA
Input current	I_{IN}		-20 to +20	mA
Input voltage (logic)	$\mathrm{V}_{\text {IN }} 1$		-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input voltage (COM, output)	$\mathrm{V}_{\text {IN }} 2$		-0.5 to $\mathrm{V}_{\mathrm{H}}+0.5$	V
Operating temperature	Topr		-10 to +90	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-65 to +150	${ }^{\circ} \mathrm{C}$
Junction temperature	Tj		-10 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{V}_{\mathrm{DD}}=\mathbf{5 . 0} \mathrm{V} \pm \mathbf{1 0 \%}$, Topr $=\mathbf{- 1 0}$ to $+\mathbf{9 0}{ }^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{D D}$		4.5	5.0	5.5	V
	V_{H}	*1	24.0		40.0	V
Input voltage	$\mathrm{V}_{\text {IN }}$		0		V_{DD}	V
	COM		0		V_{H}	V
Output current DOn	IDO	$\mathrm{V}_{\mathrm{H}}=40 \mathrm{~V} * 2$		200	400	mA
Clock frequency	$\mathrm{f}_{\text {clk }}$				8.0	MHz
Data setup time	t_{ds}		40			ns
Data hold time	t_{dh}		40			ns
Latch setup time	tLs		140			ns
Clock pulse width	$\mathrm{t}_{\mathrm{wCLK}}$		50			ns
Latch pulse width	$\mathrm{t}_{\text {wLAT }}$		80			ns

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
STBCLK frequency	$\mathrm{f}_{\text {STB }}$				1.0	MHz
CLK \rightarrow LOAD setup time	$\mathrm{t}_{\text {SL }}$		80			ns
LOAD \rightarrow CLK hold time	t_{HL}		80			ns
LOAD pulse width	t_{WL}		80			ns
STBCLK \rightarrow LOAD setup time	$\mathrm{t}_{\text {STBL }}$		80			ns
LOAD \rightarrow STBCLK hold time	t LSTB		80			ns
Clock rising edge time	t_{r}				35	ns
Clock falling edge time	t_{f}				35	ns
Latch rising edge time	t_{l}				70	ns
Latch falling edge time	$t_{\text {lf }}$				70	ns
Operating temperature	Tjopr		-1.0		+90	${ }^{\circ} \mathrm{C}$

Note : 1. The figures for normal operation are a load capacitance Cpzt of 1 nF , a power supply voltage V_{H} of 30 V , and a max input level COMmax of 25 V .
2. Value for $\mathrm{V}_{\mathrm{H}}=40 \mathrm{~V}, \mathrm{COMmax}=40 \mathrm{~V}$, frequency $=35 \mathrm{kHz}$, and duty factor $=1 / 100$.

Electrical Characteristics

DC Characteristics at $\mathrm{V}_{\mathrm{DD}}=\mathbf{5 . 0} \mathrm{V} \pm \mathbf{1 0 \%}$, Tjopr $=\mathbf{- 1 0}$ to $+\mathbf{9 0}{ }^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high-level voltage	V_{IH}		$\mathrm{V}_{\mathrm{DD}} \times 0.7$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$		-0.3		$\mathrm{V}_{\mathrm{DD}} \times 0.3$	V
Input high-level current *2	$-^{-I_{H} 1}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.0 \mathrm{~V}$	0		0.5	$\mu \mathrm{A}$
	$-l_{1 H} 2$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.0 \mathrm{~V}$	0	50	100	$\mu \mathrm{A}$
Input low-level current *3	1 IL	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0		0.5	$\mu \mathrm{A}$
Output high- level voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-0.5$			V
Output low-level voltage	V_{OL}	$\mathrm{I}_{\mathrm{O}}=400 \mu \mathrm{~A}$			0.5	V
Output high-level current transmission gate voltage	$\mathrm{V}_{\mathrm{OHT}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=40 \mathrm{~V}, \mathrm{COMn}=40 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OHT}}=10 \mathrm{~mA} \end{aligned}$	39	39.4		V
Output low-level current transmission gate voltage	$\mathrm{V}_{\text {OLT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=40 \mathrm{~V}, \mathrm{COMn}=40 \mathrm{~V}, \\ & -\mathrm{I}_{\mathrm{OHT}}=10 \mathrm{~mA} \end{aligned}$		0.6	1.0	V
Transmission gate on resistance	RON	$\mathrm{V}_{\mathrm{H}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}$		60	100	Ω
Transmission gate on resistance variation	Rx	Within chip $\frac{2(\text { MAX }- \text { MIN }) \times 100}{\text { MAX }+ \text { MIN }}$	-15		+15	Ω
Current drain	$\mathrm{I}_{\mathrm{DD} 1}$	$\mathrm{V}_{\mathrm{DD}}-\mathrm{GND}$, fclk $=3.5 \mathrm{MHz}, \mathrm{f}_{\text {SIn }}=1.75 \mathrm{MHz}$	-15		+15	Ω
Leakage current between pins	\pm INL	Leakage current between pins	0		10	$\mu \mathrm{A}$
Output leakage current	lieak	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=42 \mathrm{~V}$	0		100	$\mu \mathrm{A}$

Note : 1. The sign is negative for incoming current and positive for outgoing current.
2. $-I_{I H} 1$ applies to the following input pins: SIO to SI3, CLK, LAT, LOAD, STBCLK, and STB1 to STB3. $-I_{\mathbb{H}}$ applies to the following input pins: STB4 and STB5.
3. $I_{L L} 1$ applies to the following input pins: SI0 to SI3, CLK, LAT, LOAD, STBCLK, and STB1 to STB5.

Switching Characteristics at $V_{D D}=\mathbf{5 . 0} \mathrm{V} \pm \mathbf{1 0 \%}$, Tjopr $=\mathbf{- 1 0}$ to $+\mathbf{9 0}{ }^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
SOn output rising edge time	$\mathrm{t}_{\text {or }}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			50	ns
SOn input rising edge time	$\mathrm{t}_{\text {of }}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			50	ns
STBn \rightarrow DOn propagation delay time	$\mathrm{t}_{\text {dor }}$	*5			1.0	$\mu \mathrm{s}$
	$\mathrm{t}_{\text {dof }}$	*5			1.0	$\mu \mathrm{s}$
CLK \rightarrow SOn propagation delay time	$\mathrm{t}_{\text {sor }}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			140	ns
	$\mathrm{t}_{\text {sof }}$	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$			140	ns

[^0]Timing Chart 1

A09833
Timing Chart 2

A09834

Timing Chart 3

Timing Chart 4

Usage Note

The power on and power off sequences must use the following orders.
Power on sequence: $\mathrm{V}_{\mathrm{DD}} \rightarrow 5-\mathrm{V}$ input circuits $\rightarrow \mathrm{V}_{\mathrm{H}} \rightarrow \mathrm{COMn}$
Power off sequence: $\mathrm{COMn} \rightarrow \mathrm{V}_{\mathrm{H}} \rightarrow 5-\mathrm{V}$ input circuits $\rightarrow \mathrm{V}_{\mathrm{DD}}$

Block Diagram

Pad Layout Diagram

Signal sequence

STB3

LC4608C

Pad Functions

Pad Name	I/O	Function	Pin Count
CLK	1	Shift register clock input	1
SIO to SI3	1	Shift register serial data input. SIO is the least significant bit of the gray scale data; SI3, the most significant bit.	4
LAT	1	Parallel output latch input. high level input converts serial data to parallel data; low level latches the data.	1
STB1, 2, 3	1	3-phase selector inputs. high level input turns on the corresponding output. STB1 controls output bits DO1, DO4, DO7, DO10,... DO62. STB2 controls output bits DO2, DO5, DO8, DO11,... DO63. STB3 controls output bits DO3, DO6, DO9, DO12,... DO64.	3
STB4, 5	1	2-phase selector inputs with pull-down register. high level input turns on the corresponding output. STB4 controls the odd bits: DO1, DO3, DO5,... DO63. STB5 controls the even bits: DO2, DO4, DO6,... DO64.	2
STBCLK	1	External clock signal input for gray scale signal generator	1
LOAD	1	Reset input for 4-bit counter. low level input resets the counter to "0."	1
COM1	1	Scan voltage signal input, latched when the shift register bit is "1" (DO pin pairs 1, 2, 5, 6,...57, 58, 61, 62)	2
COM2	1	Scan voltage signal input, latched when the shift register bit is "0" (DO pin pairs 1, 2, 5, 6,..57, 58, 61, 62)	2
COM3	1	Scan voltage signal input, latched when the shift register bit is "1" (DO pin pairs $3,4,7,8, \ldots 59,60,63,64$)	2
COM4	1	Scan voltage signal input, latched when the shift register bit is "0" (DO pin pairs 3, 4, 7, 8,...59, 60, 63, 64)	2
SO0 to SO3	O	Shift register serial data output. SO0 is the least significant bit of the gray scale data; SO3, the most significant bit.	4
DO1 to DO64	0	Parallel data output. Transmission gate output.	64
$V_{D D}$	-	Power supply for logic circuits (+5 V)	2
GND	-	Ground for logic and level conversion circuits	4
V_{H}	-	Power supply for level conversion circuits +40 V	2

I/O Circuits

- Logic circuit inputs

Pins: SI0 to SI3, CLK, LAT, STB1 to STB3, STBCLK, LOAD
The pull-down resistor ${ }^{* 1}$ is only available for STB4 and STB5.

- Logic circuit outputs

Pins: SO0 to SO3

- DOn outputs

Gray Scale Timing Chart

Pad Coordinates

Pin Name	x-Coordinate	y-Coordinate	Pin Name	x-Coordinate	y-Coordinate
DO1	-4410.0	1162.0	DO50	2450.0	1162.0
DO2	-4270.0	1162.0	DO51	2590.0	1162.0
DO3	-4130.0	1162.0	DO52	2730.0	1162.0
DO4	-3990.0	1162.0	DO53	2870.0	1162.0
DO5	-3850.0	1162.0	DO54	3010.0	1162.0
D06	-3710.0	1162.0	DO55	3150.0	1162.0
D07	-3570.0	1162.0	DO56	3290.0	1162.0
DO8	-3430.0	1162.0	DO57	3430.0	1162.0
D09	-3290.0	1162.0	DO58	3570.0	1162.0
DO10	-3150.0	1162.0	DO59	3710.0	1162.0
DO11	-3010.0	1162.0	D060	3850.0	1162.0
DO12	-2870.0	1162.0	DO61	3990.0	1162.0
DO13	-2730.0	1162.0	D062	4130.0	1162.0
DO14	-2590.0	1162.0	D063	4270.0	1162.0
DO15	-2450.0	1162.0	DO64	4410.0	1162.0
DO16	-2310.0	1162.0	COM1	-4567.0	-1162.0
DO17	-2170.0	1162.0	COM2	-4367.0	-1162.0
DO18	-2030.0	1162.0	COM3	-4167.0	-1162.0
DO19	-1890.0	1162.0	COM4	-3967.0	-1162.0
DO20	-1750.0	1162.0	V_{H}	-3730.0	-1162.0
DO21	-1610.0	1162.0	GND	-3457.8	-1162.0
DO22	-1470.0	1162.0	SI3	-3255.8	-1162.0
DO23	-1330.0	1162.0	SI2	-3019.8	-1162.0
DO24	-1190.0	1162.0	SI1	-2755.8	-1162.0
DO25	-1050.0	1162.0	SIO	-2519.8	-1162.0
DO26	-910.0	1162.0	GND	-2215.8	-1162.0
DO27	-770.0	1162.0	$V_{\text {DD }}$	-1993.4	-1162.0
DO28	-630.0	1162.0	STB5	-1791.4	-1162.0
DO29	-490.0	1162.0	STB4	-1555.4	-1162.0
DO30	-350.0	1162.0	STB3	-1291.4	-1162.0
DO31	-210.0	1162.0	STB2	-1055.4	-1162.0
DO32	-70.0	1162.0	STB1	802.4	-1162.0
DO33	70.0	1162.0	STBCLK	1038.4	-1162.0
DO34	210.0	1162.0	LOAD	1302.4	-1162.0
DO35	350.0	1162.0	LAT	1538.4	-1162.0
DO36	490.0	1162.0	CLK	1802.4	-1162.0
DO37	630.0	1162.0	$V_{\text {DD }}$	1990.4	-1162.0
DO38	770.0	1162.0	GND	2212.8	-1162.0
DO39	910.0	1162.0	SOO	2516.8	-1162.0
DO40	1050.0	1162.0	SO1	2752.8	-1162.0
DO41	1190.0	1162.0	SO2	3016.8	-1162.0
DO42	1330.0	1162.0	SO3	3252.8	-1162.0
DO43	1470.0	1162.0	GND	3454.8	-1162.0
DO44	1610.0	1162.0	V_{H}	3727.8	-1162.0
DO45	1750.0	1162.0	COM4	3967.8	-1162.0
DO46	1890.0	1162.0	COM3	4167.0	-1162.0
DO47	2030.0	1162.0	COM2	4367.0	-1162.0
DO48	2170.0	1162.0	COM1	4567.0	-1162.0
DO49	2310.0	1162.0			

Note: The coordinate system places the origin at the chip center, the output pads across the top, and the input pads across the bottom.

Note on COMn Input (Example: input data $\mathbf{= 0 1 0 0}$)

Because the chip turns the output analog switches on in pairs using the timing shown above, make sure that there are no potential differences between the pairs COM1-COM2 and COM3-COM4.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.

[^0]: Note :5. The figures are for a load capacitance Cpzt of 1 nF and a power supply voltage V_{H} of 30 V as measured with $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ and $C O M n=25 \mathrm{~V} C$.

