Preliminary

Overview

The LC66354C, LC66356C, and LC66358C are 4-bit CMOS microcontrollers that integrate on a single chip all the functions required in a system controller, including ROM, RAM, I/O ports, a serial interface, comparator inputs, three-value inputs, timers, and interrupt functions. These three microcontrollers are available in a 42 -pin package.
These products differ from the earlier LC66358A Series and LC66358B Series in the power-supply voltage range, the operating speed, and other points.

Features and Functions

- On-chip ROM capacities of 4,6 , and 8 kilobytes, and an on-chip RAM capacity of 512×4 bits.
- Fully supports the LC66000 Series common instruction set (128 instructions).
- I/O ports: 36 pins
- 8-bit serial interface: two circuits (can be comected id cascade to form a 16-bit interface)
- Instruction cycle time: 0.92 to $10 \mu \mathrm{~s}$ (at 2.5 to 5.5 V)
- For the earlier LC66358A Series: 196 to 1014 (at 3.0 to 5.5 V) and 3.92 to $10 \mu \mathrm{~s}(\mathrm{at} 2.2$ to 5.5 V)
- For the earlier LC66358B Series 0.92 to 10 us (at 3.0 to 5.5 V)
- Powerful timer functions and prescalers.
- Time limit timer, evenf counter, pulse width measurement, and square wave outpiltusing a 12 bit timer.
- Time limit timer, event conintef. PVM output, and square wave output using 男 8-bititimer.
- Time base function using a 12 nin prescaler.
- Powerful interrupt system with 8 interrupt factors and 8 interrupt vector locations.
- Externalinterrupts: 3 factors/3 vector locations
- Intenal interrupts: 5 faetors/ 5 yector locations
- Flexibled/O furctions

Comparator»mputs, three-valuê inputs, $20-\mathrm{mA}$ drive outpûts, $15-\mathrm{V}$ high-voltage pinis, and pull-up/open-drain options.

- Optional runaway detection function (watchdog timer)
- 8-bit I/O functions
- Power saving functions using halt and hold modes.
- Packages: DIP42S, QIP48E (QFP48E)
- Evaluation LSIs
- LC66599 (evaluation chip) +BEA85/800-TB6630X
- LC66E308 (on-chip EPROMmicrocentroller) used together.

Package Dimensions

unit: mm
3025B-DIP42S

unit: mm
3156-QFP48E

Series Organization

Type No.	No. of pins	ROM capacity	RAM capacity		kage	Features
LC66304A/306A/308A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Normal versions 4.0 to $6.0 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66404A/406A/408A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	
LC66506B/508B/512B/516B	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64A	
LC66354A/356A/358A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Low-Voltage versions 2.2 to. $5.5 \mathrm{~V} / 3.92 \mu \mathrm{~s}$
LC66354S/356S/358S	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W		QFP44M	
LC66556A/558A/562A/566A	64	$6 \mathrm{~K} / 8 \mathrm{~K} / 12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64E	
LC66354B/356B/358B	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	Low-voltäge hightspeed versions
LC66556B/558B	64	$6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP64S	QFP64E	
LC66562B/566B	64	$12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP64S	QFP64E	\%
LC66354C/356C/358C	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48E	2,5 to $/ 5.5 \mathrm{~V} / 0.92 \mathrm{~ms}$
LC662304A/2306A/2308A	42	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP42S	QFP48FF	Onte 3.0 to $5: 5 \mathrm{~V} / 0.95 \mu \mathrm{~s} /$
LC662312A/2316A	42	$12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP42S	QFP48E	
LC665304A/665306A/665308A	48	$4 \mathrm{~K} / 6 \mathrm{~K} / 8 \mathrm{~KB}$	512 W	DIP48S	QFP48E	Dưaloscillator suppôt 30 to $5.5 \mathrm{~V} / 0.95 \mathrm{jfs}$
LC665312A/5316A	48	$12 \mathrm{~K} / 16 \mathrm{~KB}$	512 W	DIP48S	QFP48E,	
LC66E308	42	EPROM 8 KB	512 W	$\begin{aligned} & \text { DIC42S } \\ & \text { with window } \end{aligned}$	QFC48 with windey	Wifidow and OTP evaluation versions 4.5 to $5.5 \mathrm{~V} / 0.92 \mu \mathrm{~s}$
LC66P308	42	OTPROM 8 KB	512 W	DIP42S	QPP48E	
LC66E408	42	EPROM 8 KB	512 W	DIC42S with window	OFC48 with window	
LC66P408	42	OTPROM 8 KB	512 W	DP42S	OFP48E	
LC66E516	64	EPROM 16 KB	$512 \mathrm{~W}$	DIC64S with wihdow	QFe64 with window	
LC66P516	64	OTPROM 16 KB	512 W	DIP64S	QFP64E	
LC66E2316	42	EPROM 16 KB	$512 \mathrm{~W}$	DIC42S With window	QFC48 with window	4.5 to $5.5 \mathrm{~V} / 0.95 \mu \mathrm{~s}$
LC66E5316	52/48	EPROM 16 KB	$512 W^{W}$	- Mie52S with trifor	$\begin{aligned} & \text { QF48 } \\ & \text { with window } \end{aligned}$	
LC66P2316*	42	OTPROM 16, ${ }^{\text {P }}$	512)	DIP42S	QFP48E	4.0 to $5.5 \mathrm{~V} / 0.95 \mu \mathrm{~s}$
LC66P5316	48		5 ta 2 W	D148S	QFP48E	

Note: * Under development

Pin Assignments

We recommend the use of reflow-soldering techniques to solder-mount QFP packages.
Please consult with your Sanyo representative for details on process conditions if the package itself is to be directly immersed in a dip-soldering bath (dip-soldering techniques).

System Block Diagram

Differences between the LC66354C, LC66356C, and LC66358C and the LC6630X Series

Item		
System differences Hardware wait time (number of cycles) when hold mode is cleared	65536 cycles About 64 ms at $4 \mathrm{MHz}(\mathrm{Tcye}=1 \mathrm{kIS})$	16384 cycles About 16 ms at $4 \mathrm{MHz}(\mathrm{Tcyc}=1 \mu \mathrm{~s})$
Value of timer 0 after a reset (Including the value after hold mode is cleared)	Set to FFO	Set to FFC.
Difference in major features Operating power-supply voltage and operating speed (cycle time)	- LG66304A/306A/308A - LCC66E308YP308 4.5 to $5 \sqrt{ } \mathrm{~V} 92$ to $10 \mu \mathrm{~s}$ \qquad	2.5 to $5.5 \mathrm{~V} / 0.92$ to $10 \mu \mathrm{~s}$ - LC6635XA 2.2 to $5.5 \mathrm{~V} / 3.92$ to $10 \mu \mathrm{~s}$ 3.0 to $5.5 \mathrm{~V} / 1.96$ to $10 \mu \mathrm{~s}$ - LC6635XB 3.0 to $5.5 \mathrm{~V} / 0.92$ to $10 \mu \mathrm{~s}$

Note: 1. An RC oscillator cannot be usêd with the LC66354C, LC66356\%, and LC66358C.
2. There are other differences, includine diferenees outputicurints and port input voltages. For details, see the data sheets for the LCक6308A, LC66E308, and LC66P308.
3. Pay close attention to the differences insted here when uining the LC66E308 and LC66P308 for evaluation.

Pin Function Overview

Continued from preceding page.

Note: Pull-up MOS type: The output circuincludes. MOS transistor that pulls the pin up to V_{DD}.
CMOS output: Complementary 0 ewput
OD output: Openfatain outp

User Options

1. Port 0 and 1 output level at reset option

The output levels at reset for I/O ports 0 and 1, in independent 4-bit groups, can be selected from the following two options.

Option	Conditions and notes
1. Output high at reset	The four bits of ports 0 or 1 are set in a group
2. Output low at reset	The four bits of ports 0 or 1 are set in a group

2. Oscillator circuit options

Note: There is no RC oscillator option.
3. Watchdog timer option

A runaway detection function (watchdog timer) can be felected as andeption.
4. Port output type options

- The output type of each bit (pin) in ports P0, P1, P2, P3 (exceptar the P3, HOLD pin), P4, P5, P6, and PC can be selected individually from the following two options

- The portPD compatot impit and fie port PE three-value input are selected in software.

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit	Note
Maximum supply voltage	V_{DD} max	$V_{\text {DD }}$	-0.3 to +7.0	V	
Input voltage	$\mathrm{V}_{\text {IN }} 1$	P2, P3 (except for the P33/ $\overline{\mathrm{HOLD}}$ pin), P4, P5, and P6	$-0.340+15.0$	V	1
	$\mathrm{V}_{1 \times}{ }^{2}$	All other inputs	$-0.30^{-1} 0_{D D}+0.3$	V	2
Output voltage	$\mathrm{V}_{\text {OUT }}{ }^{1}$	P2, P3 (except for the P33/HOLD pin), P4, P5, and P6	$y^{2} 0.3 \mathrm{to}+15.0$	0	1
	$\mathrm{V}_{\text {OUT }}{ }^{2}$	All other inputs	0.3 to V0b +2.3		2
Output current per pin	ION	P0, P1, P2, P3 (except for the P33//̄OLD pin), P4, P5, P6, and PC	$W^{20^{2}}$	mA_{3}	3
	$-_{0} 1$	P0, P1, P4, P5	+	คf ${ }^{\text {a }}$	4
	$-\mathrm{lop}^{2}$			คA	4
Total pin current	$\Sigma \mathrm{ION}^{1}$	P0, P1, P2, P3 (except for the P33/HOLD pin), $P 40$, and P41		${ }^{4} \mathrm{~mA}$	3
	$\Sigma \mathrm{lon} 2$	P5, P6, P42, P43, PC	, 4	mA	3
	$\Sigma l_{\text {OP }} 1$	P0, P1, P2, P3 (except for the P38/HOLD pinting P40, and P41	\qquad	mA	4
	$\Sigma \mathrm{lop}^{2}$	P5, P6, P42, P43, PC ψ^{7},	25	mA	4
Allowable power dissipation	Pd max	$\mathrm{Ta}=-30 \text { to }+70^{\circ} \mathrm{C} \text { 名 }$		mW	5
Operating temperature	Topr		-30 to +70	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: 1. Applies to pins with open-drain output specifications. For pins withother than opentdin output spegfigations, the ratings in the pin column for that pin apply.
2. For the oscillator input and output pins, levels up to the free-ruhning oscillation level are allowed
3. Sink current

5. We recommend the use of reflow soldering techniques to solder mount QPR padkages.

Please consult with your Sanyo representative for detalils on process conditionsif the package itself is to be directly immersed in a dip-soldering bath (dip-soldering techniques).

Allowable Operating Ranges at $\mathrm{Ta}=-\mathbf{3 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V , unless otherwise specified.

Parameter	Symbol	Conditions	min	typ	max	Unit	Note
Operating supply voltage	$V_{D D}$	$\mathrm{V}_{\mathrm{DD}}: 0.92$ Tcyc $10 \mu \mathrm{~s}$	2.5		5.5	V	
Memory retention supply voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{H}$	V_{DD} : During hold mode	1.8		5.5	V	
Input high-level voltage	$\mathrm{V}_{\mathrm{H}}{ }^{1}$	P2, P3 (except for the P33/(/̄OLD pin), P4, P5, and P6: N-channel output transistor off	0.8 V D		+13.5	V	1
	$\mathrm{V}_{1 \mathrm{H}^{2}}$	P33/균D, $\overline{\text { RES }}$, OSC1: N-channel output transistor off	0.8 V DD		$x v$	V	2
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	PO, P1, PC, PD, PE: N -channel output transistor off	0.8 V DD		V_{DD}		3
	$\mathrm{V}_{\mathrm{HH} 4}$	PE: With 3-value input used, $\mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V	$0.8 \mathrm{~V}_{\mathrm{DD}}$, $\mathrm{V}_{\mathrm{V} \text { p }}$		
Mid-level input voltage	V_{IM}	PE: With 3-value input used, $\mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V	$0.4 \mathrm{~V}_{\mathrm{DP}}$		0.6 V ${ }^{\text {P }}$		
Common-mode input voltage range	$\mathrm{V}_{\text {CMM }}{ }^{1}$	PD0, PC2: When the comparator input is used, $V_{D D}=3.0 \text { to } 5.5 \mathrm{~V}$	4,	3		y	
	$\mathrm{V}_{\text {CMM }}{ }^{2}$	PD1, PD2, PD3, PC3: When the comparator input is used, $\mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V		4	$D D-1.5$	V	
Input low-level voltage	$\mathrm{V}_{\text {IL }}{ }^{1}$	P2, P3 (except for the P33/ $\overline{\text { HOLD }}$ pin), P5, P6, $\overline{R E S}$, and OSC1: N-channel output transistor off		34	$02 \% \mathrm{DD}$	V	2
	$\mathrm{V}_{\mathrm{IL}} 2$	P33/[OLD: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	-	4	Q2 V VD	V	
	$\mathrm{V}_{\text {IL }}{ }^{3}$	P0, P1, P4, PC, PD, PE, TEST: N-channel output transistor off	$\$ \mathrm{~V}_{\mathrm{SS}}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	3
	$\mathrm{V}_{\text {IL }} 4$	PE: With 3-value input used, $\mathrm{V}_{\mathrm{DD}}=3$ \% to 5.5 V ,			$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
Operating frequency (instruction cycle time)	$\begin{gathered} \text { fop } \\ \text { (Tcyc) } \\ \hline \end{gathered}$		$\begin{array}{r} 0.4 \\ 4 \\ 4 \end{array}$		$\begin{array}{r} 4.35 \\ (0.92) \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{MHz} \\ (\mu \mathrm{~s}) \end{gathered}$	
[External clock input conditions]							
Frequency	$\mathrm{f}_{\text {ext }}$	OSC1: Defined by Figure if thiput the elock signal to OSC1 and leave ØीSC2 open. (External clock input priugt be selected as the 4 b oscillator circuit option , 2			4.35	MHz	
Pulse width	$\mathrm{t}_{\text {extH }}, \mathrm{t}_{\text {extL }}$	OSC1: Defined by Figure 1. Input the clock signal to OSC1 ana leave OSC2 open (External clock inf mus be selectedias the oscillator cifcuit option:)				ns	
Rise and fall times	$t_{\text {extR }}, t_{\text {extF }}$	OSC1: Defined by Figure. 1. We tethe clock signak 0 OSC1 and leave OSC2 open. oscillator circuthentiontix			30	ns	

Note: 1. Applies to pins with open-drain specifications. However V_{1}, m^{2} applies to the $\mathrm{P} \beta 3 / \mathrm{HOLD}$ pin. When ports P2, P3, and P6 have CMOS Butput specettcation's they cannot be used as input pins.
2. Applies to pins with open-drain specficieations
 as input pins.

Electrical Characteristics at $\mathrm{Ta}=-\mathbf{3 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.5$ to 5.5 V unless otherwise specified.

Continued from preceding page.

Note: 1. With the output Nch transistor off in shared I/O ports with the open-drain outputspecifications These pins cannot befised as input pins if the CMOS output specifications are selected.
2. With the output Nch transistor off in shared I/O ports with the open-drain oufput specificatiols. The fating for the pull-up output specification pins is stipulated in terms of the output pull-up current IPO. These pins cannot be used as ingt pins the CMOS gütput specifications are selected.
3. With the output Nch transistor off for CMOS output specification pins
4. With the output Nch transistor off for pull-up output specification pins,
5. With the output Nch transistor off for open-drain output specification pins.
6. Reset state

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1 Guàranteed Ceramic Oscillator Constants

4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MG	F\% $33 \mathrm{pF} \pm 10 \%$	4 MHz (Kyocera Corporation) KBR4.0MS	$\mathrm{C} 1=33 \mathrm{pF} \pm 10 \%$
	$\mathrm{C} 2=33 \mathrm{pF} \pm 10 \%$		$\mathrm{C} 2=33 \mathrm{pF} \pm 10 \%$
	$\mathrm{Rd}=0$		$\mathrm{Rd}=0$

Figure 4 Serial I/O Timing

Figure 5 Timing Load

Figure 6 Input Timing forthe INTO,INT1, INT2, PIN1, and RES pins

Figure 7 Comparator Response Speed Trs Timing

LC66XXX Series Instruction Table (by function)

Abbreviations:
AC: Accumulator
E: \quad E register
CF: Carry flag
ZF: Zero flag
HL: Data pointer DPH, DPL
XY: Data pointer DPX, DPY
M: Data memory
M (HL): Data memory pointed to by the DPH, DPL data pointer
M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer
M2 (HL): Two words of data memory (starting on an even address) pointed to bythe DPH, DPL datan pointer
SP: Stack pointer
M2 (SP): Two words of data memory pointed to by the stack pointer
M4 (SP): Four words of data memory pointed to by the stack pointer
in: $\quad n$ bits of immediate data
t2: \quad Bit specification

t 2	11	10	01	00
Bit	2^{3}	2^{2}	2^{1}	2^{0}

PCh: \quad Bits 8 to 11 in the PC
PCm: Bits 4 to 7 in the PC
$\mathrm{PCl}: \quad$ Bits 0 to 3 in the PC
Fn: \quad User flag, $\mathrm{n}=0$ to 15
TIMER0: Timer 0
TIMER1: Timer 1
SIO: Serial register
P: Port
P (i4): \quad Port indicated by 4 bits of impiediate data
INT: Interrupt enable flag
(), []: Indicates the contents of focation
$\leftarrow: \quad$ Transfer direction, resuft
\forall : Exclusive or
\wedge : Logical and
v : Logical or
+: Addition
-: \quad Subtraction
—: Taking the one's conplement

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Accumulator manipulation instructions]									
CLA	Clear AC	1000	0000	1	1	$\mathrm{AC} \leftarrow 0$ (Equivalent to LAI 0.)	Clear AC to 0.	ZF	Has a vertical skip function.
DAA	Decimal adjust AC in addition	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{array}$	2	2	$A C \leftarrow(A C)+6$ (Equivalent to ADI 6.)	Add six to AC.		
DAS	Decimal adjust AC in subtraction	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{array}$	2	2	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+10 \\ & \text { (Equivalent to } \\ & \text { ADI OAH.) } \end{aligned}$	Add 10 to AC.		
CLC	Clear CF	$\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{CF} \leftarrow 0$	Clear CF to 0 .	3,	
STC	Set CF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{CF} \leftarrow 1$		CF ${ }^{\text {ck }}$	
CMA	Complement AC	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1000	1	1	$\mathrm{AC} \leftarrow \overline{(\mathrm{AC})}$	Take the one's.complemerit of $A C$.	ZF	
IA	Increment AC	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	01000	1	1	$\mathrm{AC} \leftarrow(\mathrm{AC})+1$	Increment AC.	ZF, CF	
DA	Decrement AC	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	01000	1	1	$A C \leftarrow(A C)-1$	Decrewînt AC. ${ }^{\text {ctu }}$,	ZF, CF	
RAR	Rotate AC right through CF	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	0000	1	1	$\begin{aligned} & \hline \mathrm{AC}_{3} \leftarrow(\mathrm{CF}), \\ & \mathrm{ACn} \leftarrow(\mathrm{ACn}+1), \\ & \mathrm{CF} \leftarrow\left(\mathrm{AC}_{0}\right) \\ & \hline \end{aligned}$	Shift AC (ingliding Ceright.	C	
RAL	Rotate AC left through CF	0000	00001	1	1	$\begin{aligned} & \mathrm{AC}_{0} \leftarrow(\mathrm{CF}), \\ & \mathrm{ACn}+1 \leftarrow(\mathrm{ACH} \\ & \mathrm{CF} \leftarrow\left(\mathrm{AC}_{3}\right), \end{aligned}$	Shift 大C (inclưditg CF) left	CF, ZF	
TAE	Transfer AC to E	$0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1	1	$\mathrm{E} \leftarrow(\mathrm{AC}){ }^{\text {e }}$	Transferthe coritents of ACt to E .		
TEA	Transfer E to AC	$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{AC} \leftarrow(\mathrm{E})$	Transfer theeontents of Eto AC.	ZF	
XAE	Exchange AC with E	01000	0100	1	1	$(\mathrm{AC}) \stackrel{(\mathrm{E})}{ }$	Exchange the contegits of $A C$ and E.		
[Memory manipulation instructions]									
IM	Increment M	$0 \quad 0001$	$0 \quad 0 \quad 10$	1		$(\mathrm{M}(\mathrm{HL}) \leftarrow 4)$	Increment $\mathrm{M}^{(}(\mathrm{HL})$.	ZF, CF	
DM	Decrement M	$0 \quad 0 \quad 10$	$0 \quad 0 \quad 10$		\%		Decremient $\mathrm{M}(\mathrm{HL})$.	ZF, CF	
IMDR i8	Increment M direct	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{llll} \hline 0 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$		2	$\mathrm{h}+\mathrm{e}=[\mathrm{M}(8)]+1$	ñerement M (i8).	ZF, CF	
DMDR i8	Decrement M direct	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{lll} 0 & 0 & 1 \\ \mathrm{I}_{3} & \mathrm{I}_{2} & f \end{array}$	2	$\hat{2}_{2}^{2}$	$\mathrm{M}(\mathrm{~B}) \mathrm{x}-\mathrm{M}(\mathrm{i})], h^{4}$	Decrement M (i8).	ZF, CF	
SMB t2	Set M data bit	0000	$1_{1} \mathrm{t}_{1} \mathrm{t}_{0}$	1	19	$[\mathrm{M} *+\mathrm{HL}), \mathrm{t} 2],{ }^{2}$	Set the bit in $M(H L)$ specified by t 0 and t 1 to 1 .		
RMB t2	Reset M data bit	00010	F_{i}		5	$[\mathrm{M}(\mathrm{HL})+2 \mathrm{y}$	Clear the bit in M (HL) specified by t0 and t1 to 0 .	ZF	
[Arithmetic, logic and comparison instructions]									
AD	Add M to AC			$\frac{1}{1}$			Add the contents of AC and M (HL) as two's complement values and store the result in AC.	ZF, CF	
ADDR i8	Add M direct to $A^{\circ} \mathrm{C}$	$\begin{array}{lll} 3 & & 8 \\ 1 & 1 & 0 \\ 1_{7} & I_{6} & 0 \\ 4 & v_{4} & v_{4} \end{array}$			${ }^{2}$	$A C \leftarrow(A C)+[M(18)]$	Add the contents of AC and M (i8) as two's complement values and store the result in AC.	ZF, CF	
ADC	Add M 10 AC with CF			1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & {[\mathrm{M}(\mathrm{HL})]+(\mathrm{CF})} \end{aligned}$	Add the contents of AC, $\mathrm{M}(\mathrm{HL})$ and C as two's complement values and store the result in $A C$.	ZF, CF	
ADI i4	Add immediate defta to AC	Fi 0 0 0 1	$\begin{array}{llll} F^{7} & 1 & 1 & 1 \\ I_{3} & I_{2} & l_{1} & I_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & \mathrm{I}_{3}, \mathrm{I}_{2}, \mathrm{I}_{1}, \mathrm{I}_{0} \end{aligned}$	Add the contents of AC and the immediate data as two's complement values and store the result in AC.	ZF	
SUBC	Subtract AC fromep M with CF	901	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & A C \leftarrow[M(H L)]- \\ & (A C)-(C F) \end{aligned}$	Subtract the contents of AC and $\overline{\mathrm{CF}}$ from $\mathrm{M}(\mathrm{HL})$ as two's complement values and store the result in AC.	ZF, CF	CF will be zero if there was a borrow and one otherwise.
ANDA	And M with AC then, store AC	0000	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \wedge \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical and of AC and $M(\mathrm{HL})$ and store the result in AC.	ZF	
ORA	Or M with $A C$ then store AC	0000	0 1 1001	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \mathrm{V} \\ & \mathrm{jM}(\mathrm{HL})] \end{aligned}$	Take the logical or of AC and $M(\mathrm{HL})$ and store the result in $A C$.	ZF	

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description			Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$								
[Arithmetic, logic and comparison instructions]											
EXL	Exclusive or M with $A C$ then store $A C$	00001	01001	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \forall \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical exclusive or of $A C$ and $M(H L)$ and store the result in $A C$.				
ANDM	And M with AC then store M	0000	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{HL}) \leftarrow(\mathrm{AC}) \wedge \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical and of AC and $M(\mathrm{HL})$ and store thê result in $M(\mathrm{HL})$.				
ORM	Or M with AC then store M	0000	0100	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{HL}) \leftarrow(\mathrm{AC}) \vee \\ & {[\mathrm{M}(\mathrm{HL})]} \end{aligned}$	Take the logical or of AC and $\mathrm{M}(\mathrm{HL})$ and stôre the resily in $M(\mathrm{HL})$.			$\mathrm{ZF}_{\boldsymbol{w}}$	$y^{\prime \prime}$
CM	Compare AC with M	00001	$0 \begin{array}{llll}0 & 1 & 1 & \end{array}$	1	1	$[\overline{\mathrm{M}(\mathrm{HL})]}+(\mathrm{AC})+1$	Comparefthe contentsod AC and M.f H) and set or clevacF and $Z F$ according wothe resit)				
$\mathrm{Cl} i 4$	Compare AC with immediate data	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2			Compa and fie ${ }_{3} \operatorname{lig}_{4} 4$ and Z	the contents ff Bediate data? and set of clear cording to the r	AC CF result. ZF 0 1 0	ZF, CF	
CLI i4	Compare DP ${ }_{L}$ with immediate data	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1_{3} & \mathrm{I}_{2} & 1 & 1 \\ & & & k \end{array}$				Compa with th Set ZF ZF if n	the contents of mediate data. dentical and cle		ZF	
CMB t2	Compare AC bit with M data bit	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ & & & \\ & & & i \end{array}$				$\begin{aligned} & \mathrm{if}(\mathrm{AC}, \mathrm{t})=(\mathrm{M}(\mathrm{HL}), \\ & \mathrm{t} 2 \\ & \mathrm{ZF} \leftarrow 0, \\ & \text { if }(\mathrm{AC} \text { t2 } \\ & \mathrm{t} 2] \end{aligned}$	Compa bits sp AC and identical	the correspond fied by t0 and t 1 (HL). Set ZF if nd clear ZF if not		ZF	
[Load and store instructions]											
LAE	Load AC and E from M2 (HL)	$f^{f} 0 \quad 1$	$1+1,0 \% 0$	1		$\begin{aligned} & \mathrm{AC} \leftarrow M(\mathrm{HL}), \\ & \mathrm{E} \leftarrow \mathrm{M}(\mathrm{HL}+1) \end{aligned}$	Load the contents of M2 (HL) into AC, E.				
LAI i4	Load AC with immediate data	100	$1{ }_{4}{ }_{2} \mathrm{I}_{0}$		4	$A C \leftarrow I_{3} I_{2} I_{1} I_{0}$	Load the immediate data into AC.			ZF	vertical unction
LADR i8	Load AC from M direct	$\begin{array}{lll} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 7 & 1 & y_{1} \\ \hline \end{array}$	$\begin{array}{ccc} 0.0 & 0 & 1 \\ 2 / 2 & I_{1} & 1 \end{array}$	x^{2}	2	$A C \leftarrow[M(i 8)]$	Load the contents of M (i8) into AC.			ZF	
S	Store ACtom	$\hat{V}_{1} \quad 0$	$0 \quad 1 \quad \frac{1}{4}$	1	1	$\mathrm{M}(\mathrm{HL}) \leftarrow(\mathrm{AC})$	Store the contents of AC into M (HL).				
SAE	Store AGand E to. M2 (4)	$\text { Oy } 01$	$1, \vec{f} 0$	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{HL}) \leftarrow(\mathrm{AC}) \\ & \mathrm{M}(\mathrm{HL}+1) \leftarrow(\mathrm{E}) \\ & \hline \end{aligned}$	Store the contents of AC, E into M2 (HL).				
LA reg	Load AC flon M (reg)		$10 t_{0} 0$	1	1	$\mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{reg})]$	Load the contents of M (reg) into AC. The reg is either HL or XY depending on t_{0}.		eg)	ZF	

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Load and store instructions]									
LA reg, I	Load AC from M (reg) then increment reg	0100	$10 t_{0} 1$	1	2	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{L}}\right)+1 \\ & \text { or } \mathrm{DP} \leftarrow\left(\mathrm{DP} \mathrm{P}_{\mathrm{Y}}\right)+1 \end{aligned}$	Load the contents of M (reg) into AC. (The reg is either B or XY.) Then increment the contents of either $D P_{L}$ of $D P_{Y}$. The relationship betweer t_{0} and reg is the same as"that for the LA reg instruction.	ZF	ZF is set according to the result of încrementing DPL OFPP
LA reg, D	Load AC from M (reg) then decrement reg	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$10 t_{0} 1$	1	2	$\begin{aligned} & \mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{reg})] \\ & \mathrm{DP} \mathrm{~L}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}\right)-1 \\ & \text { or } \mathrm{DP} \mathrm{P}_{\mathrm{Y}} \leftarrow(\mathrm{DPY})-1 \end{aligned}$	Load the contents of M (reg) into AC. (The reg is eitherth or XY.) Then decrement thes. contentseofeither DP and feg th samee that that for the LA regisstruction		ZF is set agcolding to the reseilt of décrementing DP_{L} or DP_{Y}.
XA reg	Exchange AC with M (reg)	0100	$11 t_{0} 0$	1	1	$(\mathrm{AC}) \leftrightarrow[\mathrm{M}(\mathrm{reg})]$	Exchange 城 contents of (reg) and AC The regis ctiner mLor XY deperioing on t 路		
XA reg, I	Exchange AC with M (reg) then increment reg	0100	$11 t_{0} 1$	1		$(A+C) \leftrightarrow[M(r e g)]$ or DPY* (DP ${ }_{Y}$) ${ }^{1}$	Lexange the côntênts of M (reg) and AC . ${ }^{\text {PThe reg is }}$ either HL of XY.) Then increment the contents of either PP for DP_{Y}. The relationship between t_{0} and regis the same as that for the X'A reg instruction.	ZF	ZF is set according to the result of incrementing DP_{L} or DP_{Y}.
XA reg, D	Exchange AC with M (reg) then decrement reg	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$		$+$		(AC) 5 [M (reg) $\text { or } D P_{Y} \leftarrow\left(E P_{i}\right)-1$	Exchange the contents of M (reg) and AC. (The reg is either HL or XY.) Then decrement the contents of either DP_{L} or DP_{Y}. The relationship between t_{0} and reg is the same as that for the XA reg instruction.	ZF	ZF is set according to the result of decrementing $D P_{L}$ or $D P_{Y}$.
XADR i8	Exchange AC with M direct	$\begin{array}{\|lll} \hline 1 & 1 & 0 \\ 1_{7} & \mathrm{I}_{6}, & 0 \\ \hline \end{array}$	$\begin{array}{ll} 1 & 0 \\ l_{3} & 10 \end{array}$		2	$(\mathrm{AC})=[\mathrm{M}(\mathrm{i8})]$	Exchange the contents of AC and M (i8).		
LEAI i8	Load E \& AC with immediate data	$\begin{array}{lll} 1 & 0 \\ 1 & 6 & I_{5} \end{array} I_{4}$	$\begin{gathered} 0,02 \\ 3 \\ 3 \end{gathered}$	$\frac{6}{2}$	2	$\begin{aligned} & f=I_{7} I_{6} I_{5} I_{4} \\ & A C \leftarrow I_{3} I_{2} I_{1} I_{0} \end{aligned}$	Load the immediate data i8 into $E, A C$.		
RTBL	Read table data froth program ROM				$\frac{3}{2}$	$\mathrm{E}, \mathrm{AC} \leftarrow$ [ROM (PCh, E, AC)]	Load into E, AC the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
RTBLP	Read table data from program $\mathrm{K} O \mathrm{M}$ then outputh fo P4, 5		1 000	1	2	Port 4, $5 \leftarrow$ [ROM (PCh, E, AC)]	Output from ports 4 and 5 the ROM data at the location determined by replacing the lower 8 bits of the PC with E, AC.		
[Data pointemanimulaerynstructions									
	Loád DP_{H} with zero ând $D P_{L}$ thith immediâe data respectively		$\begin{array}{llll} I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	1	1	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DPL} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} \end{aligned}$	Load zero into DP_{H} and the immediate data 44 into DP_{L}.		
LHI i4	Loàd DP ${ }_{4}$ with immediate data	$\begin{aligned} & 100 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\mathrm{DP}_{\mathrm{H}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$	Load the immediate data i4 into DP_{H}.		
LLI i4	Load DPL with immediate data	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}$	2	2	$D P_{L} \leftarrow I_{3} I_{2} I_{1} I_{0}$	Load the immediate data i4 into DP_{L}.		
LHLI i8	Load $\mathrm{DP}_{\mathrm{H}}, \mathrm{DP}_{\mathrm{L}}$ with immediate data	$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{\|llll} \hline 0 & 0 & 0 & 0 \\ \mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0} \\ \hline \end{array}$	2	2	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow I_{7} I_{6} I_{5} I_{4} \\ & \mathrm{DP}_{\mathrm{L}} \leftarrow I_{3} I_{2} I_{1} I_{0} \\ & \hline \end{aligned}$	Load the immediate data into $\mathrm{DL}_{\mathrm{H}}, \mathrm{DP}_{\mathrm{L}}$.		
LXYI i8	Load DP ${ }_{X}, \mathrm{DP}_{\mathrm{Y}}$ with immediate data	$\begin{array}{cccc} \hline 1 & 1 & 0 & 0 \\ I_{7} & I_{6} & I_{5} & I_{4} \\ \hline \end{array}$	$\begin{array}{\|llll} \hline 0 & 0 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	2	$\begin{aligned} & \mathrm{DPX} \leftarrow I_{7} I_{6} I_{5} I_{4} \\ & \mathrm{DP}_{\mathrm{y}} \leftarrow I_{3} I_{2} I_{1} I_{0} \\ & \hline \end{aligned}$	Load the immediate data into $\mathrm{DL}_{\mathrm{X}}, \mathrm{DP}_{\mathrm{Y}}$.		

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Data pointer manipulation instructions]									
IL	Increment DP ${ }_{\text {L }}$	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$0 \quad 0001$	1	1	$D P_{L} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)+1$	Increment the contents of $D P_{L}$.		
DL	Decrement DP_{L}	$0 \quad 0 \quad 10$	$0 \quad 0 \quad 0 \quad 1$	1	1	$D P_{L} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)-1$	Decrement the contents of DP_{L}.		
IY	Increment DP $_{Y}$	$0 \quad 0001$	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1	1	$D P_{Y} \leftarrow\left(D P_{Y}\right)+1$	Increment the contefits of DP_{Y}.	4	
DY	Decrement DP $_{Y}$	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$	1	1	$D P_{Y} \leftarrow\left(D P_{Y}\right)-1$	Decrement the contents of DP_{Y}.		
TAH	Transfer AC to DP_{H}	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}$	2	2	$\mathrm{DP}_{\mathrm{H}} \leftarrow(\mathrm{AC})$	Transfer the Gontents of A e to DP_{H}.		
THA	Transfer DP ${ }_{\text {H }}$ to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}$	2	2	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{H}}\right)$	Transfer the contents of DP: to $A C$.	ZF	
XAH	Exchange AC with DP_{H}	01000	$0 \quad 0 \quad 0 \quad 0$	1	1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP}_{\mathrm{H}}\right)$	Ekchange the contents of AC af DP_{H}.		
TAL	Transfer AC to DP ${ }_{\text {L }}$	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}$	2	2	$\mathrm{DP}_{\mathrm{L}} \leftarrow(\mathrm{AC})$	Transfert the - contentisof AC to $D P$:		
TLA	Transfer DP ${ }_{\text {L }}$ to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}$	2	2	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)_{\mathrm{j}}$	Transfor the confients of $D P$ toAe	ZF	
XAL	Exchange AC with DPL	01000	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	1	$(\mathrm{AC}) \leftrightarrow \stackrel{t}{\mathrm{t}} \mathrm{E}$	Exchange ithe contentis of AC and P_{L}.		
TAX	Transfer AC to DP_{X}	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}$	2	2	$\mathrm{DP}_{\mathrm{x}} \stackrel{\mathrm{AC})}{ }$	Transify the contents of $A C$ $10 \mathrm{DP}_{\mathrm{x}}$.		
TXA	Transfer DP_{X} to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0\end{array}$	2	2	$A C \leftarrow\left(D P_{x}\right)$	Transfer the contents of DPX to AC.	ZF	
XAX	Exchange AC with DP_{X}	01000	$0 \quad 0 \quad 10$	1	$1, k$	$(\mathrm{AC}) 4 \mathrm{PP} \mathrm{P})$	Exchame the contents of AC and $\mathrm{BP}_{\mathrm{P}}^{\mathrm{x}} \mathrm{x}$.		
TAY	Transfer AC to DP ${ }_{Y}$	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}$	${ }^{2}$	2	$\rho \dot{F}+\Delta A C)$	Transfier the contents of $A C$ tio PP_{Y}.		
TYA	Transfer DP ${ }_{\text {Y }}$ to AC	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll} 1 & 1 & 1 & \vec{y} \\ 0 & 0 & 1 & 1 \\ \hline \end{array}$	2	22^{4}	$\text { Ac. }\left(9 P^{4}\right)$	Fransfer the contents of DP_{Y} to AC.	ZF	
XAY	Exchange AC with $D P_{Y}$	01000	$0 \text {, } 1$	$1, \underline{6}$		$\mathrm{AC})=(\mathrm{DPY})$	Exchange the contents of AC and DP ${ }_{Y}$.		
[Flag manipulation instructions]									
SFB $n 4$	Set flag bit	$\begin{array}{llll} 0 & 1 & 1 & 1 \end{array}$	$\mathrm{n}_{2} \mathrm{n}_{1} \mathrm{~h}_{\mathrm{t}}$			$\mathrm{Fn} \leftarrow \mathrm{~F}^{\prime}$	Set the flag specified by n 4 to 1 .		
RFB $n 4$	Reset flag bit	$0 \quad 0, \vec{i} \frac{1}{1}$	$n_{3} \text { n } h_{1} n_{1} n_{0}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	1	$\mathrm{FD} \stackrel{0}{ }$	Reset the flag specified by n 4 to 0 .	ZF	
[Jump and subroutine instructions]									
JMP addr	Jump in the current: bank		$\begin{aligned} & P_{41} P^{2}=P_{0} P_{8} \\ & P_{3} P_{2} P_{1} P_{1} P_{0} \end{aligned}$			$\begin{aligned} & \mathrm{PC} 13,12 \leftarrow \\ & \mathrm{PC} 13,12 \\ & \mathrm{PC} 11 \text { to } 0 \leftarrow \\ & \mathrm{P}_{11} \text { to } \mathrm{P}_{8} \end{aligned}$	Jump to the location in the same bank specified by the immediate data P12.		This becomes PC12 + (PC12) immediately following a BANK instruction.
JPEA	Jump to the address stored at E and $A C$ in the fürrent page			1	1	$\begin{aligned} & \text { PC13 to } 8 \leftarrow \\ & \text { PC13 to } 8, \\ & \text { PC7 to } 4 \leftarrow(\mathrm{E}), \\ & \text { PC3 to } 0 \leftarrow(\mathrm{AC}) \end{aligned}$	Jump to the location determined by replacing the lower 8 bits of the PC by E, AC.		
CAL addr			$\begin{aligned} & 0 \mathrm{P}_{10} \mathrm{P}_{9} \mathrm{P}_{8} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \end{aligned}$	2	2	$\begin{aligned} & \mathrm{PC} 13 \text { to } 11 \leftarrow 0, \\ & \mathrm{PC} 10 \text { to } 0 \leftarrow \\ & \mathrm{P}_{10} \text { to } \mathrm{P}_{0}, \\ & \mathrm{M} 4(\mathrm{SP}) \leftarrow \\ & (\mathrm{CF}, \mathrm{ZF}, \mathrm{PC} 13 \text { to } 0), \\ & \mathrm{SP} \leftarrow(\mathrm{SP})-4 \\ & \hline \end{aligned}$	Call a subroutine.		
$\begin{aligned} & \text { CZP } \\ & \text { addr } \end{aligned}$	Call subroưtine int the zero page		$\mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}$	1	2	$\begin{aligned} & \text { PC13 to } 6, \\ & \text { PC10 } \leftarrow 0, \\ & \text { PC5 to } 2 \leftarrow P_{3} \text { to } P_{0}, \\ & \text { M4 (SP) } \leftarrow \\ & (C F, Z F, \text { PC12 to } 0), \\ & S P \leftarrow S P-4 \end{aligned}$	Call a subroutine on page 0 in bank 0.		
BANK	Change bank	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	1	1		Change the memory bank and register bank.		

Continued on next page.

Continued from preceding page.

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$						
[Branch instructions]									
BC addr	Branch on CF	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{CF})=1 \end{aligned}$	Branch to the location in the same page specified by $\mathrm{P}_{\vec{f}}$ to P_{0} if CF is one.		
BNC addr	Branch on no CF	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC} 7 \text { to } 0 \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{CF})=0 \end{aligned}$	Branch to the location in the same page speciffied by P_{7} to P_{0} if CF is zero.		
BZ addr	Branch on ZF	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }(Z F)=1 \end{aligned}$	Branch to the focation in the same page specified bl ${ }^{2} P_{Z}$ to P_{0} if $Z F$ is*one.		
BNZ addr	Branch on no ZF	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 0 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \text { PC7 to } 0 \leftarrow \\ & P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \text { if }(Z F)=0 \end{aligned}$	Braneh to thetocation inthe same page sigecified $\mathrm{p}_{\mathrm{y}} \mathrm{P}_{7}$ to Fo if ZF is zere;		
BFn4 addr	Branch on flag bit	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{aligned} & n_{3} n_{2} n_{1} n_{0} \\ & P_{3} P_{2} P_{1} P_{0} \end{aligned}$	2	2	PC7 to $0 \leftarrow$ $\begin{aligned} & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} P_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }(\mathrm{Fa})^{2}+1 \end{aligned}$	Branche to the tecation in the samefage specified by P_{6} to P_{7} it the thag (of the 16 user fags staceified by $n_{3} n_{2} n_{n}$ forie.		
BNFn4 addr	Branch on no flag bit	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}\right.$	$\begin{aligned} & n_{3} n_{2} n_{1} n_{0} \\ & P_{3} P_{2} P_{1} P_{0} \end{aligned}$	2	2		Brameh to the location in the same päge specifiéd by P_{0} to P_{7} if the flag (ffltie 16 user flags) speciffed by $n_{3} n_{2} n_{1} n_{0}$ is'zero.		
[$1 / \mathrm{O}$ instructions]									
IP0	Input port 0 to AC	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	0000		1	$\mathrm{AC}=(\mathrm{PO})$	Input the contents of port 0 to AC .	ZF	
IP	Input port to AC	00010	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1			finput the contents of port $P\left(D P_{\mathrm{L}}\right)$ to AC .	ZF	
IPM	Input port to M	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$10,4$	1		$\mathrm{M}\left(\mathrm{H} \mathrm{H}_{\mathrm{k}}\right) \leftarrow[\mathrm{P}(\mathrm{DPL})$	Input the contents of port $P\left(D P_{L}\right)$ to $M(H L)$.		
IPDR i4	Input port to AC direct	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	$\begin{array}{lll} 1 & y_{1} & 1 \\ l_{3} l_{2} & l_{1} & l_{0} \end{array}$			$\mathrm{AC} \leftarrow[\mathrm{P}(\mathrm{i} 4)]$	Input the contents of P (i4) to AC.	ZF	
IP45	Input port 4, 5 to E, AC respectively	$\begin{array}{llll} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}$	$\begin{array}{lll} z^{4} & 1 & 1 \\ 0 & 1 & 0 \end{array}$			$\begin{aligned} & \mathrm{E} \leftarrow\left[\begin{array}{l} (4)]^{\prime} \\ \mathrm{AC} \end{array}\right] \end{aligned}$	Input the contents of ports $P(4)$ and $P(5)$ to E and $A C$ respectively.		
OP	Output AC to port	$0 \theta^{\frac{h^{f}}{f^{\frac{F}{n}}}} 0$		1	1	$\vec{F}\left(P_{\mathrm{L}}\right) \leftarrow(\mathrm{AC})$	Output the contents of AC to port P (DPL).		
OPM	Output M to port	O,	\% O	1	$\frac{7}{7}$	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right) \leftarrow[\mathrm{M}(\mathrm{HL})$	Output the contents of $\mathrm{M}(\mathrm{HL})$ to port P (DPL).		
OPDR i4	Output AC to port direct	$\begin{array}{lll} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 \end{array}$	$\begin{array}{lll} y_{3}+1 / 4 & 1 \\ I_{3} & I_{1} & I_{1} \\ \hline \end{array}$		2	$\mathrm{P}(\mathrm{i} 4) \leftarrow(\mathrm{AC})$	Output the contents of AC to P (i4).		
OP45	Output E, ACto port 4, 5 respectiveify			A_{2}	2	$\begin{aligned} & P(4) \leftarrow(E) \\ & P(5) \leftarrow(A C) \end{aligned}$	Output the contents of E and $A C$ to ports $P(4)$ and $P(5)$ respectively.		
SPB t2	Set pốt bit	$\begin{gathered} 60 \\ 0 \end{gathered}$	$10 t_{0}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right) \mathrm{t} 2\right] \leftarrow 1$	Set to one the bit in port $P\left(D P_{L}\right)$ specified by the immediate data $\mathrm{t}_{1} \mathrm{t}_{0}$.		
RPB t2	Beset pormb	$\begin{array}{lll} 6 & \\ \hline \end{array}$	$10 \begin{array}{llll} 1 & t_{0} \end{array}$	1	1	$\left[\mathrm{P}\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right) \mathrm{t} 2\right] \leftarrow 0$	Clear to zero the bit in port $P\left(D P_{\mathrm{L}}\right)$ specified by the immediate data $\mathrm{t}_{1} \mathrm{t}_{0}$.	ZF	
ANDPDR i4, p4	And port with immediâte data tìn output		$\left\lvert\, \begin{array}{cccc} 0 & 1 & 0 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & P\left(P_{3} \text { to } P_{0}\right) \leftarrow \\ & {\left[P\left(P_{3} \text { to } P_{0}\right)\right] \vee} \\ & I_{3} \text { to } I_{0} \end{aligned}$	Take the logical AND of $P\left(\mathrm{P}_{3}\right.$ to P_{0}) and the immediate data $I_{3} I_{2} I_{1} I_{0}$ and output the result to $P\left(P_{3}\right.$ to $\left.P_{0}\right)$.	ZF	
ORPDR i4, p4	Or port with immediate data then output	$\left(\begin{array}{llll} 1 & 1 & 0 & 0 \\ l_{3} & I_{2} & I_{1} & l_{0} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & P\left(P_{3} \text { to } P_{0}\right) \leftarrow \\ & {\left[P\left(P_{3} \text { to } P_{0}\right)\right] \vee} \\ & I_{3} \text { to } I_{0} \end{aligned}$	Take the logical OR of $P\left(\mathrm{P}_{3}\right.$ to P_{0}) and the immediate data $I_{3} I_{2} I_{1} I_{0}$ and output the result to $P\left(P_{3}\right.$ to $\left.P_{0}\right)$.	ZF	

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Timer control instructions]									
WTTM0	Write timer 0	1100	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	1	2	$\begin{aligned} & \text { TIMERO } \leftarrow[\mathrm{M} 2(\mathrm{HL})], \\ & (\mathrm{AC}) \end{aligned}$	Write the contents of M2 (HL) AC into the timer 0 reload register.		
WTTM1	Write timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}$	2	2	TIMER1 $\leftarrow(\mathrm{E}),(\mathrm{AC})$	Write the contents of EAC into the timer 1 reload register A.	Ψ_{4}	
RTIM0	Read timer 0	1100	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1	2	$\begin{aligned} & \mathrm{M} 2(\mathrm{HL}), \\ & \mathrm{AC} \leftarrow(\text { TIMERO }) \end{aligned}$	Read out the contefits of the timer 0 countef into M2 (Heti), AC.		
RTIM1	Read timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ \hline \end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{TIMER} 1)$	Read out the contentsof the: timer 1 Coûnter into E, AC綡	y_{2}	
START0	Start timer 0	1 1 0 0 1 1 1 0	1 1 1 1 0 1 1 0	2	2	Start timer 0 counter	Start the timer 0 couninter		
START1	Start timer 1	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \hline \end{array}$	2	2	Start timer 1 counter	Sfart the tifine counter.		
STOPO	Stop timer 0	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll} \hline 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ \hline \end{array}$	2	2	Stop timer 0 coupter	Stop the timer counter.		
STOP1	Stop timer 1	\|llll $\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1\end{array}$	2	2	Stop timer 1 counter	Stop the timert countef.		
[Interrupt control instructions]									
MSET	Set interrupt master enable flag	$\begin{array}{\|llll} \hline 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline \end{array}$	2	2		Set wie interrupt master enable flag to onte		
MRESET	Reset interrupt master enable flag	$\begin{array}{llll} \hline 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \hline \end{array}$	$\begin{array}{llll} \hline 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}$	2	2	MSE $\leftarrow 0$	Clear the interrupt master enable flag tozero.		
EIH i4	Enable interrupt high	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}\right.$	$\begin{array}{cccc} \hline 1 & 1 & 0 & 1 \\ I_{3} & I_{2} & I_{1} & I_{0} \\ \hline \end{array}$	2	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\mathrm{EDIH}(\mathrm{EDIH})$	Set the finterrupt enable flag to one:		
EIL i4	Enable interrupt low	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}$	$\begin{array}{ccccc}1 & 1 & 0 & 1 \\ l_{3} & l_{2} & l_{1} & l_{0}\end{array}$	2imb	2	EBH $\% E D I U V i 4$	Sef the interrupt enable flag to one.		
DIH i4	Disable interrupt high	$\left\lvert\, \begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}\right.$	$\begin{array}{llll} 1 & 1 & 0 & 1 \\ I_{3} & I_{2} & I_{1}, & l_{0} \end{array}$	2			Ofear the interrupt enable flag to zero.	ZF	
DIL i4	Disable interrupt low	$\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}$		${ }^{2 \sqrt{3}}$		EDIL (EDIL)	Clear the interrupt enable flag to zero.	ZF	
WTSP	Write SP	1 1 0 0 1 1 0 1 1 1 0	$\left\lvert\, \begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{array}\right.$	124	2	$\mathrm{SP} \leftarrow(\mathrm{E}), \mathrm{AC}$	Transfer the contents of E , AC to SP.		
RSP	Read SP	$\begin{array}{llll} \hline 1 & 1 & 0 & 0^{8} \\ 1 & 1 & 0 & y^{\prime} \end{array}$	$\begin{array}{lll} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 \end{array}$		z^{2}	$\mathrm{E}, \mathrm{AC}, \hat{F}$	Transfer the contents of SP to E, AC.		
[Standby control instructions]									
HALT	HALT	$\begin{array}{lll} 1 & 0 & 0 \\ y & f & 0 \end{array}$	$\begin{gathered} 1+{ }^{1+2}+1 \\ 1+1 \end{gathered}$			HALT	Enter halt mode.		
HOLD	HOLD	$\begin{array}{lll} 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$			3	HOLD	Enter hold mode.		
[Serial I/O control instructiohs]									
STARTS	Start serial 10	$\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}$			2	START SI O	Start SIO operation.		
WTSIO	Write sefíalio 0	$\begin{aligned} & 1410 \\ & 1 \end{aligned}$	$\begin{array}{lll} 1 & 1 \\ 1 & \text { y } \end{array}$	2	2	$\mathrm{SIO} \leftarrow(\mathrm{E}),(\mathrm{AC})$	Write the contents of E , AC to SIO.		
RSIO	Read serial I O	$\begin{array}{lll} 12 y \\ 1 & 0 \\ 1 \end{array}$	$\begin{array}{lll}1 / 4 & 1 \\ \text { 1r } & 1 & 1\end{array}$	2	2	$\mathrm{E}, \mathrm{AC} \leftarrow(\mathrm{SIO})$	Read out the contents of SIO into $E, A C$.		
[Other instructions] ,									
	No operation	0000	$0 \quad 000$	1	1	No operation	Consume one machine cycle without performing any operation.		
SB i2	Select bañk	$\begin{array}{lll} 1 & 0 & 0 \\ 4 & 0 & 0 \end{array}$	1 1 1 1 0 0 1_{1} l_{0}	2	2	$\mathrm{PC} 12 \leftarrow \mathrm{I}_{1} \mathrm{I}_{0}$	Specify the memory bank.		

Note: The range of for i2 in SB ipsitruction varies according to device. Refer to User's Manual for that.

- No products described or contained ferein are intended for use in surgical implants, life-support systems, aerospace equipment, nutlear powe weontrol sysfems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly 9 indirectly catise injury, death or property loss.
- Anyone purctasing any productstescribed or contained herein for an above-mentioned use shall:

F (17) Accept Litl responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distibutors end all their officers and employees, jointly and severally, against any and all claims and litigation and all damajes, cost and expenses associated with such use:
Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRICO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (inctuding circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1997. Specifications and information herein are subject to change without notice.

